Computational Personality Analysis

Computational Personality Analysis
Author: Yair Neuman
Publisher: Springer
Total Pages: 120
Release: 2016-08-30
Genre: Computers
ISBN: 3319424602

The emergence of intelligent technologies, sophisticated natural language processing methodologies and huge textual repositories, invites a new approach for the challenge of automatically identifying personality dimensions through the analysis of textual data. This short book aims to (1) introduce the challenge of computational personality analysis, (2) present a unique approach to personality analysis and (3) illustrate this approach through case studies and worked-out examples. This book is of special relevance to psychologists, especially those interested in the new insights offered by new computational and data-intensive tools, and to computational social scientists interested in human personality and language processing.

Principal Component Analysis

Principal Component Analysis
Author: I.T. Jolliffe
Publisher: Springer Science & Business Media
Total Pages: 283
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475719043

Principal component analysis is probably the oldest and best known of the It was first introduced by Pearson (1901), techniques ofmultivariate analysis. and developed independently by Hotelling (1933). Like many multivariate methods, it was not widely used until the advent of electronic computers, but it is now weIl entrenched in virtually every statistical computer package. The central idea of principal component analysis is to reduce the dimen sionality of a data set in which there are a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This reduction is achieved by transforming to a new set of variables, the principal components, which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables. Computation of the principal components reduces to the solution of an eigenvalue-eigenvector problem for a positive-semidefinite symmetrie matrix. Thus, the definition and computation of principal components are straightforward but, as will be seen, this apparently simple technique has a wide variety of different applications, as weIl as a number of different deri vations. Any feelings that principal component analysis is a narrow subject should soon be dispelled by the present book; indeed some quite broad topics which are related to principal component analysis receive no more than a brief mention in the final two chapters.

Computational Social Psychology

Computational Social Psychology
Author: Robin R. Vallacher
Publisher: Routledge
Total Pages: 694
Release: 2017-05-25
Genre: Psychology
ISBN: 1351701673

Computational Social Psychology showcases a new approach to social psychology that enables theorists and researchers to specify social psychological processes in terms of formal rules that can be implemented and tested using the power of high speed computing technology and sophisticated software. This approach allows for previously infeasible investigations of the multi-dimensional nature of human experience as it unfolds in accordance with different temporal patterns on different timescales. In effect, the computational approach represents a rediscovery of the themes and ambitions that launched the field over a century ago. The book brings together social psychologists with varying topical interests who are taking the lead in this redirection of the field. Many present formal models that are implemented in computer simulations to test basic assumptions and investigate the emergence of higher-order properties; others develop models to fit the real-time evolution of people’s inner states, overt behavior, and social interactions. Collectively, the contributions illustrate how the methods and tools of the computational approach can investigate, and transform, the diverse landscape of social psychology.

Advancement of Artificial Intelligence in Healthcare Engineering

Advancement of Artificial Intelligence in Healthcare Engineering
Author: Dilip Singh Sisodia
Publisher: Medical Information Science Reference
Total Pages: 300
Release: 2020
Genre:
ISBN: 9781799821205

"This book explores the possible applications of machine learning, deep learning, soft computing, and evolutionary computing techniques in the design, implementation, and optimization of challenging healthcare engineering solutions"--

Computational Psychiatry

Computational Psychiatry
Author: A. David Redish
Publisher: MIT Press
Total Pages: 425
Release: 2016-12-09
Genre: Science
ISBN: 0262035421

Psychiatrists and neuroscientists discuss the potential of computational approaches to address problems in psychiatry including diagnosis, treatment, and integration with neurobiology. Modern psychiatry is at a crossroads, as it attempts to balance neurological analysis with psychological assessment. Computational neuroscience offers a new lens through which to view such thorny issues as diagnosis, treatment, and integration with neurobiology. In this volume, psychiatrists and theoretical and computational neuroscientists consider the potential of computational approaches to psychiatric issues. This unique collaboration yields surprising results, innovative synergies, and novel open questions. The contributors consider mechanisms of psychiatric disorders, the use of computation and imaging to model psychiatric disorders, ways that computation can inform psychiatric nosology, and specific applications of the computational approach. Contributors Susanne E. Ahmari, Huda Akil, Deanna M. Barch, Matthew Botvinick, Michael Breakspear, Cameron S. Carter, Matthew V. Chafee, Sophie Denève, Daniel Durstewitz, Michael B. First, Shelly B. Flagel, Michael J. Frank, Karl J. Friston, Joshua A. Gordon, Katia M. Harlé, Crane Huang, Quentin J. M. Huys, Peter W. Kalivas, John H. Krystal, Zeb Kurth-Nelson, Angus W. MacDonald III, Tiago V. Maia, Robert C. Malenka, Sanjay J. Mathew, Christoph Mathys, P. Read Montague, Rosalyn Moran, Theoden I. Netoff, Yael Niv, John P. O'Doherty, Wolfgang M. Pauli, Martin P. Paulus, Frederike Petzschner, Daniel S. Pine, A. David Redish, Kerry Ressler, Katharina Schmack, Jordan W. Smoller, Klaas Enno Stephan, Anita Thapar, Heike Tost, Nelson Totah, Jennifer L. Zick

Handbook of Language Analysis in Psychology

Handbook of Language Analysis in Psychology
Author: Morteza Dehghani
Publisher: Guilford Publications
Total Pages: 650
Release: 2022-03-02
Genre: Social Science
ISBN: 1462548431

Recent years have seen an explosion of interest in the use of computerized text analysis methods to address basic psychological questions. This comprehensive handbook brings together leading language analysis scholars to present foundational concepts and methods for investigating human thought, feeling, and behavior using language. Contributors work toward integrating psychological science and theory with natural language processing (NLP) and machine learning. Ethical issues in working with natural language data sets are discussed in depth. The volume showcases NLP-driven techniques and applications in areas including interpersonal relationships, personality, morality, deception, social biases, political psychology, psychopathology, and public health.

Predictive Clustering

Predictive Clustering
Author: Hendrik Blockeel
Publisher: Springer
Total Pages: 240
Release: 2012-05-31
Genre: Computers
ISBN: 9781461411468

This book introduces a novel paradigm for machine learning and data mining called predictive clustering, which covers a broad variety of learning tasks and offers a fresh perspective on existing techniques. The book presents an informal introduction to predictive clustering, describing learning tasks and settings, and then continues with a formal description of the paradigm, explaining algorithms for learning predictive clustering trees and predictive clustering rules, as well as presenting the applicability of these learning techniques to a broad range of tasks. Variants of decision tree learning algorithms are also introduced. Finally, the book offers several significant applications in ecology and bio-informatics. The book is written in a straightforward and easy-to-understand manner, aimed at varied readership, ranging from researchers with an interest in machine learning techniques to practitioners of data mining technology in the areas of ecology and bioinformatics.

Distributed Computing and Internet Technology

Distributed Computing and Internet Technology
Author: Manish Parashar
Publisher: Springer
Total Pages: 206
Release: 2008-12-12
Genre: Computers
ISBN: 3540897372

This book constitutes the refereed proceedings of the 5th International Conference on Distributed Computing and Internet Technology, ICDCIT 2008, held in New Delhi, India, in December 2008. The 12 revised full papers and 8 revised short papers presented were carefully reviewed and selected from 96 submissions. Featuring current research and results in theory, methodology and applications of Distributed Computing and Internet Technology, the papers are subdivided in topical sections on distributed systems and languages, data grid, security, mobile ad-hoc networks, distributed databases, Web applications, and P2P systems.

Personality in Speech

Personality in Speech
Author: Tim Polzehl
Publisher: Springer
Total Pages: 187
Release: 2014-08-30
Genre: Technology & Engineering
ISBN: 3319095161

This work combines interdisciplinary knowledge and experience from research fields of psychology, linguistics, audio-processing, machine learning, and computer science. The work systematically explores a novel research topic devoted to automated modeling of personality expression from speech. For this aim, it introduces a novel personality assessment questionnaire and presents the results of extensive labeling sessions to annotate the speech data with personality assessments. It provides estimates of the Big 5 personality traits, i.e. openness, conscientiousness, extroversion, agreeableness, and neuroticism. Based on a database built on the questionnaire, the book presents models to tell apart different personality types or classes from speech automatically.