Computational Graph Theory In Bioinformatics
Download Computational Graph Theory In Bioinformatics full books in PDF, epub, and Kindle. Read online free Computational Graph Theory In Bioinformatics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Sanghamitra Bandyopadhyay |
Publisher | : World Scientific |
Total Pages | : 353 |
Release | : 2007 |
Genre | : Computers |
ISBN | : 9812708898 |
Bioinformatics, a field devoted to the interpretation and analysis of biological data using computational techniques, has evolved tremendously in recent years due to the explosive growth of biological information generated by the scientific community. Soft computing is a consortium of methodologies that work synergistically and provides, in one form or another, flexible information processing capabilities for handling real-life ambiguous situations. Several research articles dealing with the application of soft computing tools to bioinformatics have been published in the recent past; however, they are scattered in different journals, conference proceedings and technical reports, thus causing inconvenience to readers, students and researchers. This book, unique in its nature, is aimed at providing a treatise in a unified framework, with both theoretical and experimental results, describing the basic principles of soft computing and demonstrating the various ways in which they can be used for analyzing biological data in an efficient manner. Interesting research articles from eminent scientists around the world are brought together in a systematic way such that the reader will be able to understand the issues and challenges in this domain, the existing ways of tackling them, recent trends, and future directions. This book is the first of its kind to bring together two important research areas, soft computing and bioinformatics, in order to demonstrate how the tools and techniques in the former can be used for efficiently solving several problems in the latter. Sample Chapter(s). Chapter 1: Bioinformatics: Mining the Massive Data from High Throughput Genomics Experiments (160 KB). Contents: Overview: Bioinformatics: Mining the Massive Data from High Throughput Genomics Experiments (H Tang & S Kim); An Introduction to Soft Computing (A Konar & S Das); Biological Sequence and Structure Analysis: Reconstructing Phylogenies with Memetic Algorithms and Branch-and-Bound (J E Gallardo et al.); Classification of RNA Sequences with Support Vector Machines (J T L Wang & X Wu); Beyond String Algorithms: Protein Sequence Analysis Using Wavelet Transforms (A Krishnan & K-B Li); Filtering Protein Surface Motifs Using Negative Instances of Active Sites Candidates (N L Shrestha & T Ohkawa); Distill: A Machine Learning Approach to Ab Initio Protein Structure Prediction (G Pollastri et al.); In Silico Design of Ligands Using Properties of Target Active Sites (S Bandyopadhyay et al.); Gene Expression and Microarray Data Analysis: Inferring Regulations in a Genomic Network from Gene Expression Profiles (N Noman & H Iba); A Reliable Classification of Gene Clusters for Cancer Samples Using a Hybrid Multi-Objective Evolutionary Procedure (K Deb et al.); Feature Selection for Cancer Classification Using Ant Colony Optimization and Support Vector Machines (A Gupta et al.); Sophisticated Methods for Cancer Classification Using Microarray Data (S-B Cho & H-S Park); Multiobjective Evolutionary Approach to Fuzzy Clustering of Microarray Data (A Mukhopadhyay et al.). Readership: Graduate students and researchers in computer science, bioinformatics, computational and molecular biology, artificial intelligence, data mining, machine learning, electrical engineering, system science; researchers in pharmaceutical industries.
Author | : Mourad Elloumi |
Publisher | : John Wiley & Sons |
Total Pages | : 1027 |
Release | : 2011-04-04 |
Genre | : Science |
ISBN | : 1118101987 |
This book represents the most comprehensive and up-to-date collection of information on the topic of computational molecular biology. Bringing the most recent research into the forefront of discussion, Algorithms in Computational Molecular Biology studies the most important and useful algorithms currently being used in the field, and provides related problems. It also succeeds where other titles have failed, in offering a wide range of information from the introductory fundamentals right up to the latest, most advanced levels of study.
Author | : Pietro Hiram Guzzi |
Publisher | : Elsevier |
Total Pages | : 212 |
Release | : 2020-05-11 |
Genre | : Science |
ISBN | : 0128193514 |
Biological Network Analysis: Trends, Approaches, Graph Theory, and Algorithms considers three major biological networks, including Gene Regulatory Networks (GRN), Protein-Protein Interaction Networks (PPIN), and Human Brain Connectomes. The book's authors discuss various graph theoretic and data analytics approaches used to analyze these networks with respect to available tools, technologies, standards, algorithms and databases for generating, representing and analyzing graphical data. As a wide variety of algorithms have been developed to analyze and compare networks, this book is a timely resource. - Presents recent advances in biological network analysis, combining Graph Theory, Graph Analysis, and various network models - Discusses three major biological networks, including Gene Regulatory Networks (GRN), Protein-Protein Interaction Networks (PPIN) and Human Brain Connectomes - Includes a discussion of various graph theoretic and data analytics approaches
Author | : Matthias Dehmer |
Publisher | : John Wiley & Sons |
Total Pages | : 278 |
Release | : 2015-11-16 |
Genre | : Medical |
ISBN | : 3527337245 |
This comprehensive introduction to computational network theory as a branch of network theory builds on the understanding that such networks are a tool to derive or verify hypotheses by applying computational techniques to large scale network data. The highly experienced team of editors and high-profile authors from around the world present and explain a number of methods that are representative of computational network theory, derived from graph theory, as well as computational and statistical techniques. With its coherent structure and homogenous style, this reference is equally suitable for courses on computational networks.
Author | : Björn H. Junker |
Publisher | : John Wiley & Sons |
Total Pages | : 278 |
Release | : 2011-09-20 |
Genre | : Computers |
ISBN | : 1118209915 |
An introduction to biological networks and methods for their analysis Analysis of Biological Networks is the first book of its kind to provide readers with a comprehensive introduction to the structural analysis of biological networks at the interface of biology and computer science. The book begins with a brief overview of biological networks and graph theory/graph algorithms and goes on to explore: global network properties, network centralities, network motifs, network clustering, Petri nets, signal transduction and gene regulation networks, protein interaction networks, metabolic networks, phylogenetic networks, ecological networks, and correlation networks. Analysis of Biological Networks is a self-contained introduction to this important research topic, assumes no expert knowledge in computer science or biology, and is accessible to professionals and students alike. Each chapter concludes with a summary of main points and with exercises for readers to test their understanding of the material presented. Additionally, an FTP site with links to author-provided data for the book is available for deeper study. This book is suitable as a resource for researchers in computer science, biology, bioinformatics, advanced biochemistry, and the life sciences, and also serves as an ideal reference text for graduate-level courses in bioinformatics and biological research.
Author | : Raina Robeva |
Publisher | : Academic Press |
Total Pages | : 383 |
Release | : 2015-05-09 |
Genre | : Mathematics |
ISBN | : 0128012714 |
Written by experts in both mathematics and biology, Algebraic and Discrete Mathematical Methods for Modern Biology offers a bridge between math and biology, providing a framework for simulating, analyzing, predicting, and modulating the behavior of complex biological systems. Each chapter begins with a question from modern biology, followed by the description of certain mathematical methods and theory appropriate in the search of answers. Every topic provides a fast-track pathway through the problem by presenting the biological foundation, covering the relevant mathematical theory, and highlighting connections between them. Many of the projects and exercises embedded in each chapter utilize specialized software, providing students with much-needed familiarity and experience with computing applications, critical components of the "modern biology" skill set. This book is appropriate for mathematics courses such as finite mathematics, discrete structures, linear algebra, abstract/modern algebra, graph theory, probability, bioinformatics, statistics, biostatistics, and modeling, as well as for biology courses such as genetics, cell and molecular biology, biochemistry, ecology, and evolution. - Examines significant questions in modern biology and their mathematical treatments - Presents important mathematical concepts and tools in the context of essential biology - Features material of interest to students in both mathematics and biology - Presents chapters in modular format so coverage need not follow the Table of Contents - Introduces projects appropriate for undergraduate research - Utilizes freely accessible software for visualization, simulation, and analysis in modern biology - Requires no calculus as a prerequisite - Provides a complete Solutions Manual - Features a companion website with supplementary resources
Author | : Mark Buchanan |
Publisher | : Cambridge University Press |
Total Pages | : 282 |
Release | : 2010-05-13 |
Genre | : Science |
ISBN | : 0521882737 |
Key introductory text for graduate students and researchers in physics, biology and biochemistry.
Author | : Matthew He |
Publisher | : John Wiley & Sons |
Total Pages | : 231 |
Release | : 2011-03-16 |
Genre | : Computers |
ISBN | : 1118099524 |
Mathematics of Bioinformatics: Theory, Methods, and Applications provides a comprehensive format for connecting and integrating information derived from mathematical methods and applying it to the understanding of biological sequences, structures, and networks. Each chapter is divided into a number of sections based on the bioinformatics topics and related mathematical theory and methods. Each topic of the section is comprised of the following three parts: an introduction to the biological problems in bioinformatics; a presentation of relevant topics of mathematical theory and methods to the bioinformatics problems introduced in the first part; an integrative overview that draws the connections and interfaces between bioinformatics problems/issues and mathematical theory/methods/applications.
Author | : Kim Sneppen |
Publisher | : Cambridge University Press |
Total Pages | : 328 |
Release | : 2005-08-25 |
Genre | : Science |
ISBN | : 9780521844192 |
This book, first published in 2005, is a discussion for advanced physics students of how to use physics to model biological systems.
Author | : William L. William L. Hamilton |
Publisher | : Springer Nature |
Total Pages | : 141 |
Release | : 2022-06-01 |
Genre | : Computers |
ISBN | : 3031015886 |
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.