Computational Analysis Of Biochemical Systems
Download Computational Analysis Of Biochemical Systems full books in PDF, epub, and Kindle. Read online free Computational Analysis Of Biochemical Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Eberhard O. Voit |
Publisher | : Cambridge University Press |
Total Pages | : 556 |
Release | : 2000-09-04 |
Genre | : Medical |
ISBN | : 9780521785792 |
Teaches the use of modern computational methods for the analysis of biomedical systems using case studies and accompanying software.
Author | : Nikolay V Dokholyan |
Publisher | : Springer Science & Business Media |
Total Pages | : 360 |
Release | : 2012-02-12 |
Genre | : Science |
ISBN | : 1461421454 |
Computational modeling is emerging as a powerful new approach to study and manipulate biological systems. Multiple methods have been developed to model, visualize, and rationally alter systems at various length scales, starting from molecular modeling and design at atomic resolution to cellular pathways modeling and analysis. Higher time and length scale processes, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. This book provides an overview of the established computational methods used for modeling biologically and medically relevant systems.
Author | : Andres Kriete |
Publisher | : Academic Press |
Total Pages | : 549 |
Release | : 2013-11-26 |
Genre | : Science |
ISBN | : 0124059384 |
This comprehensively revised second edition of Computational Systems Biology discusses the experimental and theoretical foundations of the function of biological systems at the molecular, cellular or organismal level over temporal and spatial scales, as systems biology advances to provide clinical solutions to complex medical problems. In particular the work focuses on the engineering of biological systems and network modeling. - Logical information flow aids understanding of basic building blocks of life through disease phenotypes - Evolved principles gives insight into underlying organizational principles of biological organizations, and systems processes, governing functions such as adaptation or response patterns - Coverage of technical tools and systems helps researchers to understand and resolve specific systems biology problems using advanced computation - Multi-scale modeling on disparate scales aids researchers understanding of dependencies and constraints of spatio-temporal relationships fundamental to biological organization and function.
Author | : David F. Anderson |
Publisher | : Springer |
Total Pages | : 91 |
Release | : 2015-04-23 |
Genre | : Mathematics |
ISBN | : 3319168959 |
This book focuses on counting processes and continuous-time Markov chains motivated by examples and applications drawn from chemical networks in systems biology. The book should serve well as a supplement for courses in probability and stochastic processes. While the material is presented in a manner most suitable for students who have studied stochastic processes up to and including martingales in continuous time, much of the necessary background material is summarized in the Appendix. Students and Researchers with a solid understanding of calculus, differential equations and elementary probability and who are well-motivated by the applications will find this book of interest. David F. Anderson is Associate Professor in the Department of Mathematics at the University of Wisconsin and Thomas G. Kurtz is Emeritus Professor in the Departments of Mathematics and Statistics at that university. Their research is focused on probability and stochastic processes with applications in biology and other areas of science and technology. These notes are based in part on lectures given by Professor Anderson at the University of Wisconsin – Madison and by Professor Kurtz at Goethe University Frankfurt.
Author | : Emmanuel Barillot |
Publisher | : CRC Press |
Total Pages | : 463 |
Release | : 2012-08-25 |
Genre | : Science |
ISBN | : 1439831440 |
The future of cancer research and the development of new therapeutic strategies rely on our ability to convert biological and clinical questions into mathematical models—integrating our knowledge of tumour progression mechanisms with the tsunami of information brought by high-throughput technologies such as microarrays and next-generation sequencing. Offering promising insights on how to defeat cancer, the emerging field of systems biology captures the complexity of biological phenomena using mathematical and computational tools. Novel Approaches to Fighting Cancer Drawn from the authors’ decade-long work in the cancer computational systems biology laboratory at Institut Curie (Paris, France), Computational Systems Biology of Cancer explains how to apply computational systems biology approaches to cancer research. The authors provide proven techniques and tools for cancer bioinformatics and systems biology research. Effectively Use Algorithmic Methods and Bioinformatics Tools in Real Biological Applications Suitable for readers in both the computational and life sciences, this self-contained guide assumes very limited background in biology, mathematics, and computer science. It explores how computational systems biology can help fight cancer in three essential aspects: Categorising tumours Finding new targets Designing improved and tailored therapeutic strategies Each chapter introduces a problem, presents applicable concepts and state-of-the-art methods, describes existing tools, illustrates applications using real cases, lists publically available data and software, and includes references to further reading. Some chapters also contain exercises. Figures from the text and scripts/data for reproducing a breast cancer data analysis are available at www.cancer-systems-biology.net.
Author | : Quentin Vanhaelen |
Publisher | : Humana |
Total Pages | : 0 |
Release | : 2022-12-24 |
Genre | : Science |
ISBN | : 9781071617694 |
This detailed book provides an overview of various classes of computational techniques, including machine learning techniques, commonly used for evaluating kinetic parameters of biological systems. Focusing on three distinct situations, the volume covers the prediction of the kinetics of enzymatic reactions, the prediction of the kinetics of protein-protein or protein-ligand interactions (binding rates, dissociation rates, binding affinities), and the prediction of relatively large set of kinetic rates of reactions usually found in quantitative models of large biological networks. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of expert implementation advice that leads to successful results. Authoritative and practical, Computational Methods for Estimating the Kinetic Parameters of Biological Systems will be of great interest for researchers working through the challenge of identifying the best type of algorithm and who would like to use or develop a computational method for the estimation of kinetic parameters.
Author | : Luca Marchetti |
Publisher | : Springer |
Total Pages | : 245 |
Release | : 2017-09-27 |
Genre | : Computers |
ISBN | : 3319631136 |
This book explains the state-of-the-art algorithms used to simulate biological dynamics. Each technique is theoretically introduced and applied to a set of modeling cases. Starting from basic simulation algorithms, the book also introduces more advanced techniques that support delays, diffusion in space, or that are based on hybrid simulation strategies. This is a valuable self-contained resource for graduate students and practitioners in computer science, biology and bioinformatics. An appendix covers the mathematical background, and the authors include further reading sections in each chapter.
Author | : Marie-Noelle Pons |
Publisher | : Elsevier |
Total Pages | : 610 |
Release | : 2005-08-02 |
Genre | : Science |
ISBN | : 9780080442518 |
Author | : Russell Schwartz |
Publisher | : MIT Press |
Total Pages | : 403 |
Release | : 2008-07-25 |
Genre | : Science |
ISBN | : 0262303396 |
A practice-oriented survey of techniques for computational modeling and simulation suitable for a broad range of biological problems. There are many excellent computational biology resources now available for learning about methods that have been developed to address specific biological systems, but comparatively little attention has been paid to training aspiring computational biologists to handle new and unanticipated problems. This text is intended to fill that gap by teaching students how to reason about developing formal mathematical models of biological systems that are amenable to computational analysis. It collects in one place a selection of broadly useful models, algorithms, and theoretical analysis tools normally found scattered among many other disciplines. It thereby gives the aspiring student a bag of tricks that will serve him or her well in modeling problems drawn from numerous subfields of biology. These techniques are taught from the perspective of what the practitioner needs to know to use them effectively, supplemented with references for further reading on more advanced use of each method covered. The text, which grew out of a class taught at Carnegie Mellon University, covers models for optimization, simulation and sampling, and parameter tuning. These topics provide a general framework for learning how to formulate mathematical models of biological systems, what techniques are available to work with these models, and how to fit the models to particular systems. Their application is illustrated by many examples drawn from a variety of biological disciplines and several extended case studies that show how the methods described have been applied to real problems in biology.
Author | : Jaijeet Roychowdhury |
Publisher | : Now Publishers Inc |
Total Pages | : 222 |
Release | : 2009 |
Genre | : Computers |
ISBN | : 1601983042 |
Numerical simulation and modelling have been growing in importance and seeing steadily increasing practical application. The proliferation of applications and physical domains for which simulation technologies are now needed, compounded by generally increased complexity, has expanded the scope of numerical simulation and modelling within CAD and spurred new research directions. Numerical Simulation and Modelling of Electronic and Biochemical Systems provides an introduction to the fundamentals of numerical simulation, and to the basics of modelling electronic circuits and biochemical reactions. The emphasis is on capturing a minimal set of important concepts succinctly, but concretely enough that the reader will be left with an adequate foundation for further independent exploration. Starting from mathematical models of basic electronic elements, circuits are modelled as nonlinear differential-algebraic equation (DAE) systems. Two basic techniques - quiescent steady state and transient - for solving these differential equations systems are then developed. It is then shown how biochemical reactions can also be modelled deterministically as DAEs. Following this, frequency domain techniques for finding sinusoidal steady states of linear DAEs are developed, as are direct and adjoint techniques for computing parameter sensitivities and the effects of stationary random noise. For readers interested in a glimpse of topics beyond these basics, an introduction to nonlinear periodic steady state methods (harmonic balance and shooting) and the multitime partial differential equation formulation is provided. Also provided is an overview of model order reduction, an important topic of current research that has roots in numerical simulation algorithms. Finally, sample applications of nonlinear oscillator macromodels - in circuits (PLLs), biochemical reaction-diffusion systems and nanoelectronics - are presented.