Compressed Sensing In Radar Signal Processing
Download Compressed Sensing In Radar Signal Processing full books in PDF, epub, and Kindle. Read online free Compressed Sensing In Radar Signal Processing ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Antonio De Maio |
Publisher | : Cambridge University Press |
Total Pages | : 381 |
Release | : 2019-10-17 |
Genre | : Technology & Engineering |
ISBN | : 110857694X |
Learn about the most recent theoretical and practical advances in radar signal processing using tools and techniques from compressive sensing. Providing a broad perspective that fully demonstrates the impact of these tools, the accessible and tutorial-like chapters cover topics such as clutter rejection, CFAR detection, adaptive beamforming, random arrays for radar, space-time adaptive processing, and MIMO radar. Each chapter includes coverage of theoretical principles, a detailed review of current knowledge, and discussion of key applications, and also highlights the potential benefits of using compressed sensing algorithms. A unified notation and numerous cross-references between chapters make it easy to explore different topics side by side. Written by leading experts from both academia and industry, this is the ideal text for researchers, graduate students and industry professionals working in signal processing and radar.
Author | : Antonio De Maio |
Publisher | : Cambridge University Press |
Total Pages | : 381 |
Release | : 2019-10-17 |
Genre | : Computers |
ISBN | : 1108428290 |
Learn about the latest theoretical and practical advances in radar signal processing using tools from compressive sensing.
Author | : Avishy Y. Carmi |
Publisher | : Springer Science & Business Media |
Total Pages | : 505 |
Release | : 2013-09-13 |
Genre | : Technology & Engineering |
ISBN | : 364238398X |
This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related approaches. Each methodology has its own formalities for dealing with such problems. As an example, in the Bayesian approach, sparseness promoting priors such as Laplace and Cauchy are normally used for penalising improbable model variables, thus promoting low complexity solutions. Compressed sensing techniques and homotopy-type solutions, such as the LASSO, utilise l1-norm penalties for obtaining sparse solutions using fewer observations than conventionally needed. The book emphasizes on the role of sparsity as a machinery for promoting low complexity representations and likewise its connections to variable selection and dimensionality reduction in various engineering problems. This book is intended for researchers, academics and practitioners with interest in various aspects and applications of sparse signal processing.
Author | : Otmar Scherzer |
Publisher | : Springer Science & Business Media |
Total Pages | : 1626 |
Release | : 2010-11-23 |
Genre | : Mathematics |
ISBN | : 0387929193 |
The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.
Author | : Simon Foucart |
Publisher | : Springer Science & Business Media |
Total Pages | : 634 |
Release | : 2013-08-13 |
Genre | : Computers |
ISBN | : 0817649484 |
At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.
Author | : Steven L. Brunton |
Publisher | : Cambridge University Press |
Total Pages | : 615 |
Release | : 2022-05-05 |
Genre | : Computers |
ISBN | : 1009098489 |
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Author | : Malek Benslama |
Publisher | : Elsevier |
Total Pages | : 257 |
Release | : 2017-11-20 |
Genre | : Technology & Engineering |
ISBN | : 0081019688 |
Compressed Sensing in Li-Fi and Wi-Fi Networks features coverage of the first applications in optical telecommunications and wireless. After extensive development of basic theory, many techniques are presented, such as non-asymptotic analysis of random matrices, adaptive detection, greedy algorithms, and the use of graphical models. The book can be used as a comprehensive manual for teaching and research in courses covering advanced signal processing, efficient data processing algorithms, and telecommunications. After a thorough review of the basic theory of compressed sensing, many mathematical techniques are presented, including advanced signal modeling, Nyquist sub-sampling of analog signals, the non-asymptotic analysis of random matrices, adaptive detection, greedy algorithms, and the use of graphical models. - Offers extensive development of basic theory behind telecommunications and wireless networks - Contains broad coverage of treat compressed sensing, including electromagnetism signals - Provides insights into the two key areas of telecommunications, WIFI and LIFI - Includes information on advanced signal modeling, Nyquist sub-sampling of analog signals, the non-asymptotic analysis of random matrices, adaptive detection, greedy algorithms, and more
Author | : Peter Knee |
Publisher | : Morgan & Claypool Publishers |
Total Pages | : 88 |
Release | : 2012 |
Genre | : Computers |
ISBN | : 1627050345 |
Although the field of sparse representations is relatively new, research activities in academic and industrial research labs are already producing encouraging results. The sparse signal or parameter model motivated several researchers and practitioners to explore high complexity/wide bandwidth applications such as Digital TV, MRI processing, and certain defense applications. The potential signal processing advancements in this area may influence radar technologies. This book presents the basic mathematical concepts along with a number of useful MATLAB(R) examples to emphasize the practical implementations both inside and outside the radar field.
Author | : C.H. Chen |
Publisher | : CRC Press |
Total Pages | : 727 |
Release | : 2017-05-25 |
Genre | : Technology & Engineering |
ISBN | : 1351650653 |
Future remote sensing systems will make extensive use of Compressive Sensing (CS) as it becomes more integrated into the system design with increased high resolution sensor developments and the rising earth observation data generated each year. Written by leading experts in the field Compressive Sensing of Earth Observations provides a comprehensive and balanced coverage of the theory and applications of CS in all aspects of earth observations. This work covers a myriad of practical aspects such as the use of CS in detection of human vital signs in a cluttered environment and the corresponding modeling of rib-cage breathing. Readers are also presented with three different applications of CS to the ISAR imaging problem, which includes image reconstruction from compressed data, resolution enhancement, and image reconstruction from incomplete data.
Author | : Yonina C. Eldar |
Publisher | : Cambridge University Press |
Total Pages | : 557 |
Release | : 2012-05-17 |
Genre | : Technology & Engineering |
ISBN | : 1107394392 |
Compressed sensing is an exciting, rapidly growing field, attracting considerable attention in electrical engineering, applied mathematics, statistics and computer science. This book provides the first detailed introduction to the subject, highlighting theoretical advances and a range of applications, as well as outlining numerous remaining research challenges. After a thorough review of the basic theory, many cutting-edge techniques are presented, including advanced signal modeling, sub-Nyquist sampling of analog signals, non-asymptotic analysis of random matrices, adaptive sensing, greedy algorithms and use of graphical models. All chapters are written by leading researchers in the field, and consistent style and notation are utilized throughout. Key background information and clear definitions make this an ideal resource for researchers, graduate students and practitioners wanting to join this exciting research area. It can also serve as a supplementary textbook for courses on computer vision, coding theory, signal processing, image processing and algorithms for efficient data processing.