Compressed Sensing For Distributed Systems
Download Compressed Sensing For Distributed Systems full books in PDF, epub, and Kindle. Read online free Compressed Sensing For Distributed Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Giulio Coluccia |
Publisher | : Springer |
Total Pages | : 104 |
Release | : 2015-05-29 |
Genre | : Technology & Engineering |
ISBN | : 9812873902 |
This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to the theoretical bounds. It presents and discusses various distributed reconstruction algorithms, summarizing the theoretical reconstruction guarantees and providing a comparative analysis of their performance and complexity. In summary, this book will allow the reader to get started in the field of distributed compressed sensing from theory to practice. We believe that this book can find a broad audience among researchers, scientists, or engineers with very diverse backgrounds, having interests in mathematical optimization, network systems, graph theoretical methods, linear systems, stochastic systems, and randomized algorithms. To help the reader become familiar with the theory and algorithms presented, accompanying software is made available on the authors’ web site, implementing several of the algorithms described in the book. The only background required of the reader is a good knowledge of advanced calculus and linear algebra.
Author | : Simon Foucart |
Publisher | : Springer Science & Business Media |
Total Pages | : 634 |
Release | : 2013-08-13 |
Genre | : Computers |
ISBN | : 0817649484 |
At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.
Author | : Steven L. Brunton |
Publisher | : Cambridge University Press |
Total Pages | : 615 |
Release | : 2022-05-05 |
Genre | : Computers |
ISBN | : 1009098489 |
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Author | : Otmar Scherzer |
Publisher | : Springer Science & Business Media |
Total Pages | : 1626 |
Release | : 2010-11-23 |
Genre | : Mathematics |
ISBN | : 0387929193 |
The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.
Author | : Avishy Y. Carmi |
Publisher | : Springer Science & Business Media |
Total Pages | : 505 |
Release | : 2013-09-13 |
Genre | : Technology & Engineering |
ISBN | : 364238398X |
This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related approaches. Each methodology has its own formalities for dealing with such problems. As an example, in the Bayesian approach, sparseness promoting priors such as Laplace and Cauchy are normally used for penalising improbable model variables, thus promoting low complexity solutions. Compressed sensing techniques and homotopy-type solutions, such as the LASSO, utilise l1-norm penalties for obtaining sparse solutions using fewer observations than conventionally needed. The book emphasizes on the role of sparsity as a machinery for promoting low complexity representations and likewise its connections to variable selection and dimensionality reduction in various engineering problems. This book is intended for researchers, academics and practitioners with interest in various aspects and applications of sparse signal processing.
Author | : Antonio De Maio |
Publisher | : Cambridge University Press |
Total Pages | : 381 |
Release | : 2019-10-17 |
Genre | : Technology & Engineering |
ISBN | : 110857694X |
Learn about the most recent theoretical and practical advances in radar signal processing using tools and techniques from compressive sensing. Providing a broad perspective that fully demonstrates the impact of these tools, the accessible and tutorial-like chapters cover topics such as clutter rejection, CFAR detection, adaptive beamforming, random arrays for radar, space-time adaptive processing, and MIMO radar. Each chapter includes coverage of theoretical principles, a detailed review of current knowledge, and discussion of key applications, and also highlights the potential benefits of using compressed sensing algorithms. A unified notation and numerous cross-references between chapters make it easy to explore different topics side by side. Written by leading experts from both academia and industry, this is the ideal text for researchers, graduate students and industry professionals working in signal processing and radar.
Author | : Bhaskar Krishnamachari |
Publisher | : Springer Science & Business Media |
Total Pages | : 385 |
Release | : 2009-05-25 |
Genre | : Computers |
ISBN | : 3642020844 |
The book constitutes the refereed proceedings of the Fifth International Conference on Distributed Computing in Sensor Systems, DCOSS 2009, held in Marina del Rey, CA, USA, in June 2009. The 26 revised full papers presented were carefully reviewed and selected from 116 submissions. The research contributions in this proceedings span many aspects of sensor systems, including energy efficient mechanisms, tracking and surveillance, activity recognition, simulation, query optimization, network coding, localization, application development, data and code dissemination.
Author | : Malek Benslama |
Publisher | : Elsevier |
Total Pages | : 257 |
Release | : 2017-11-20 |
Genre | : Technology & Engineering |
ISBN | : 0081019688 |
Compressed Sensing in Li-Fi and Wi-Fi Networks features coverage of the first applications in optical telecommunications and wireless. After extensive development of basic theory, many techniques are presented, such as non-asymptotic analysis of random matrices, adaptive detection, greedy algorithms, and the use of graphical models. The book can be used as a comprehensive manual for teaching and research in courses covering advanced signal processing, efficient data processing algorithms, and telecommunications. After a thorough review of the basic theory of compressed sensing, many mathematical techniques are presented, including advanced signal modeling, Nyquist sub-sampling of analog signals, the non-asymptotic analysis of random matrices, adaptive detection, greedy algorithms, and the use of graphical models. - Offers extensive development of basic theory behind telecommunications and wireless networks - Contains broad coverage of treat compressed sensing, including electromagnetism signals - Provides insights into the two key areas of telecommunications, WIFI and LIFI - Includes information on advanced signal modeling, Nyquist sub-sampling of analog signals, the non-asymptotic analysis of random matrices, adaptive detection, greedy algorithms, and more
Author | : Dong Yu |
Publisher | : Springer |
Total Pages | : 329 |
Release | : 2014-11-11 |
Genre | : Technology & Engineering |
ISBN | : 1447157796 |
This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approach. In addition to the rigorous mathematical treatment of the subject, the book also presents insights and theoretical foundation of a series of highly successful deep learning models.
Author | : Zhu Han |
Publisher | : Cambridge University Press |
Total Pages | : 308 |
Release | : 2013-06-06 |
Genre | : Computers |
ISBN | : 1107018838 |
This comprehensive reference delivers the understanding and skills needed to take advantage of compressive sensing in wireless networks.