Complex Networks X

Complex Networks X
Author: Sean P. Cornelius
Publisher: Springer
Total Pages: 181
Release: 2019-03-05
Genre: Science
ISBN: 3030144593

This book aims to bring together researchers and practitioners working across domains and research disciplines to measure, model, and visualize complex networks. It collects the works presented at the 10th International Conference on Complex Networks (CompleNet) in Taragona, Spain, March, 2019. With roots in physical, information and social science, the study of complex networks provides a formal set of mathematical methods, computational tools and theories to describe, prescribe and predict dynamics and behaviors of complex systems. Despite their diversity, whether the systems are made up of physical, technological, informational, or social networks, they share many common organizing principles and thus can be studied with similar approaches. This book provides a view of the state-of-the-art in this dynamic field and covers topics such as group decision-making, brain and cellular connectivity, network controllability and resiliency, online activism, recommendation systems, and cyber security. This text will appeal to students and researchers in the field.

Complex Networks

Complex Networks
Author: Vito Latora
Publisher: Cambridge University Press
Total Pages: 585
Release: 2017-09-28
Genre: Computers
ISBN: 1107103185

A comprehensive introduction to the theory and applications of complex network science, complete with real-world data sets and software tools.

Graph Spectra for Complex Networks

Graph Spectra for Complex Networks
Author: Piet van Mieghem
Publisher: Cambridge University Press
Total Pages: 363
Release: 2010-12-02
Genre: Technology & Engineering
ISBN: 1139492276

Analyzing the behavior of complex networks is an important element in the design of new man-made structures such as communication systems and biologically engineered molecules. Because any complex network can be represented by a graph, and therefore in turn by a matrix, graph theory has become a powerful tool in the investigation of network performance. This self-contained 2010 book provides a concise introduction to the theory of graph spectra and its applications to the study of complex networks. Covering a range of types of graphs and topics important to the analysis of complex systems, this guide provides the mathematical foundation needed to understand and apply spectral insight to real-world systems. In particular, the general properties of both the adjacency and Laplacian spectrum of graphs are derived and applied to complex networks. An ideal resource for researchers and students in communications networking as well as in physics and mathematics.

Data Science and Complex Networks

Data Science and Complex Networks
Author: Guido Caldarelli
Publisher: Oxford University Press
Total Pages: 136
Release: 2016-11-10
Genre: Science
ISBN: 0191024023

This book provides a comprehensive yet short description of the basic concepts of Complex Network theory. In contrast to other books the authors present these concepts through real case studies. The application topics span from Foodwebs, to the Internet, the World Wide Web and the Social Networks, passing through the International Trade Web and Financial time series. The final part is devoted to definition and implementation of the most important network models. The text provides information on the structure of the data and on the quality of available datasets. Furthermore it provides a series of codes to allow immediate implementation of what is theoretically described in the book. Readers already used to the concepts introduced in this book can learn the art of coding in Python by using the online material. To this purpose the authors have set up a dedicated web site where readers can download and test the codes. The whole project is aimed as a learning tool for scientists and practitioners, enabling them to begin working instantly in the field of Complex Networks.

Complex Networks & Their Applications X

Complex Networks & Their Applications X
Author: Rosa Maria Benito
Publisher: Springer Nature
Total Pages: 896
Release: 2022-01-01
Genre: Technology & Engineering
ISBN: 3030934098

This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students, and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the X International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2021). The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure, network dynamics; diffusion, epidemics and spreading processes; resilience and control as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks, and technological networks.

Graph Theory and Complex Networks

Graph Theory and Complex Networks
Author: Maarten van Steen
Publisher: Maarten Van Steen
Total Pages: 285
Release: 2010
Genre: Graph theory
ISBN: 9789081540612

This book aims to explain the basics of graph theory that are needed at an introductory level for students in computer or information sciences. To motivate students and to show that even these basic notions can be extremely useful, the book also aims to provide an introduction to the modern field of network science. Mathematics is often unnecessarily difficult for students, at times even intimidating. For this reason, explicit attention is paid in the first chapters to mathematical notations and proof techniques, emphasizing that the notations form the biggest obstacle, not the mathematical concepts themselves. This approach allows to gradually prepare students for using tools that are necessary to put graph theory to work: complex networks. In the second part of the book the student learns about random networks, small worlds, the structure of the Internet and the Web, peer-to-peer systems, and social networks. Again, everything is discussed at an elementary level, but such that in the end students indeed have the feeling that they: 1.Have learned how to read and understand the basic mathematics related to graph theory. 2.Understand how basic graph theory can be applied to optimization problems such as routing in communication networks. 3.Know a bit more about this sometimes mystical field of small worlds and random networks. There is an accompanying web site www.distributed-systems.net/gtcn from where supplementary material can be obtained, including exercises, Mathematica notebooks, data for analyzing graphs, and generators for various complex networks.

Complex Network Analysis in Python

Complex Network Analysis in Python
Author: Dmitry Zinoviev
Publisher:
Total Pages: 233
Release: 2018-01-29
Genre: Computers
ISBN: 9781680502695

Construct, analyze, and visualize networks with networkx, a Python language module. Network analysis is a powerful tool you can apply to a multitude of datasets and situations. Discover how to work with all kinds of networks, including social, product, temporal, spatial, and semantic networks. Convert almost any real-world data into a complex network--such as recommendations on co-using cosmetic products, muddy hedge fund connections, and online friendships. Analyze and visualize the network, and make business decisions based on your analysis. If you're a curious Python programmer, a data scientist, or a CNA specialist interested in mechanizing mundane tasks, you'll increase your productivity exponentially. Complex network analysis used to be done by hand or with non-programmable network analysis tools, but not anymore! You can now automate and program these tasks in Python. Complex networks are collections of connected items, words, concepts, or people. By exploring their structure and individual elements, we can learn about their meaning, evolution, and resilience. Starting with simple networks, convert real-life and synthetic network graphs into networkx data structures. Look at more sophisticated networks and learn more powerful machinery to handle centrality calculation, blockmodeling, and clique and community detection. Get familiar with presentation-quality network visualization tools, both programmable and interactive--such as Gephi, a CNA explorer. Adapt the patterns from the case studies to your problems. Explore big networks with NetworKit, a high-performance networkx substitute. Each part in the book gives you an overview of a class of networks, includes a practical study of networkx functions and techniques, and concludes with case studies from various fields, including social networking, anthropology, marketing, and sports analytics. Combine your CNA and Python programming skills to become a better network analyst, a more accomplished data scientist, and a more versatile programmer. What You Need: You will need a Python 3.x installation with the following additional modules: Pandas (>=0.18), NumPy (>=1.10), matplotlib (>=1.5), networkx (>=1.11), python-louvain (>=0.5), NetworKit (>=3.6), and generalizesimilarity. We recommend using the Anaconda distribution that comes with all these modules, except for python-louvain, NetworKit, and generalizedsimilarity, and works on all major modern operating systems.

Control Techniques for Complex Networks

Control Techniques for Complex Networks
Author: Sean Meyn
Publisher: Cambridge University Press
Total Pages: 33
Release: 2008
Genre: Mathematics
ISBN: 0521884411

From foundations to state-of-the-art; the tools and philosophy you need to build network models.

Structural Analysis of Complex Networks

Structural Analysis of Complex Networks
Author: Matthias Dehmer
Publisher: Springer Science & Business Media
Total Pages: 493
Release: 2010-10-14
Genre: Mathematics
ISBN: 0817647899

Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science, machine learning, artificial intelligence, computational and systems biology, cognitive science, computational linguistics, and mathematical chemistry. It may also be used as a supplementary textbook in graduate-level seminars on structural graph analysis, complex networks, or network-based machine learning methods.

Dynamical Processes on Complex Networks

Dynamical Processes on Complex Networks
Author: Alain Barrat
Publisher: Cambridge University Press
Total Pages: 361
Release: 2012-10-11
Genre: Science
ISBN: 9781107626256

The availability of large data sets have allowed researchers to uncover complex properties such as large scale fluctuations and heterogeneities in many networks which have lead to the breakdown of standard theoretical frameworks and models. Until recently these systems were considered as haphazard sets of points and connections. Recent advances have generated a vigorous research effort in understanding the effect of complex connectivity patterns on dynamical phenomena. For example, a vast number of everyday systems, from the brain to ecosystems, power grids and the Internet, can be represented as large complex networks. This new and recent account presents a comprehensive explanation of these effects.