Competing Risks
Download Competing Risks full books in PDF, epub, and Kindle. Read online free Competing Risks ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jan Beyersmann |
Publisher | : Springer Science & Business Media |
Total Pages | : 249 |
Release | : 2011-11-18 |
Genre | : Mathematics |
ISBN | : 1461420350 |
This book covers competing risks and multistate models, sometimes summarized as event history analysis. These models generalize the analysis of time to a single event (survival analysis) to analysing the timing of distinct terminal events (competing risks) and possible intermediate events (multistate models). Both R and multistate methods are promoted with a focus on nonparametric methods.
Author | : Ronald B. Geskus |
Publisher | : CRC Press |
Total Pages | : 278 |
Release | : 2015-07-14 |
Genre | : Mathematics |
ISBN | : 1466570369 |
Data Analysis with Competing Risks and Intermediate States explains when and how to use models and techniques for the analysis of competing risks and intermediate states. It covers the most recent insights on estimation techniques and discusses in detail how to interpret the obtained results.After introducing example studies from the biomedical and
Author | : Martin J. Crowder |
Publisher | : CRC Press |
Total Pages | : 201 |
Release | : 2001-05-11 |
Genre | : Mathematics |
ISBN | : 1420035908 |
If something can fail, it can often fail in one of several ways and sometimes in more than one way at a time. There is always some cause of failure, and almost always, more than one possible cause. In one sense, then, survival analysis is a lost cause. The methods of Competing Risks have often been neglected in the survival analysis literature.
Author | : Martin J. Crowder |
Publisher | : CRC Press |
Total Pages | : 402 |
Release | : 2012-04-17 |
Genre | : Mathematics |
ISBN | : 1439875227 |
Multivariate Survival Analysis and Competing Risks introduces univariate survival analysis and extends it to the multivariate case. It covers competing risks and counting processes and provides many real-world examples, exercises, and R code. The text discusses survival data, survival distributions, frailty models, parametric methods, multivariate
Author | : David G. Kleinbaum |
Publisher | : Springer Science & Business Media |
Total Pages | : 332 |
Release | : 2013-04-18 |
Genre | : Medical |
ISBN | : 1475725558 |
A straightforward and easy-to-follow introduction to the main concepts and techniques of the subject. It is based on numerous courses given by the author to students and researchers in the health sciences and is written with such readers in mind. A "user-friendly" layout includes numerous illustrations and exercises and the book is written in such a way so as to enable readers learn directly without the assistance of a classroom instructor. Throughout, there is an emphasis on presenting each new topic backed by real examples of a survival analysis investigation, followed up with thorough analyses of real data sets. Each chapter concludes with practice exercises to help readers reinforce their understanding of the concepts covered, before going on to a more comprehensive test. Answers to both are included. Readers will enjoy David Kleinbaums style of presentation, making this an excellent introduction for all those coming to the subject for the first time.
Author | : John D. Kalbfleisch |
Publisher | : John Wiley & Sons |
Total Pages | : 462 |
Release | : 2011-01-25 |
Genre | : Mathematics |
ISBN | : 1118031237 |
Contains additional discussion and examples on left truncationas well as material on more general censoring and truncationpatterns. Introduces the martingale and counting process formulation swillbe in a new chapter. Develops multivariate failure time data in a separate chapterand extends the material on Markov and semi Markovformulations. Presents new examples and applications of data analysis.
Author | : Melinda Mills |
Publisher | : SAGE |
Total Pages | : 301 |
Release | : 2011-01-19 |
Genre | : Social Science |
ISBN | : 1848601026 |
This book is an accessible, practical and comprehensive guide for researchers from multiple disciplines including biomedical, epidemiology, engineering and the social sciences. Written for accessibility, this book will appeal to students and researchers who want to understand the basics of survival and event history analysis and apply these methods without getting entangled in mathematical and theoretical technicalities. Inside, readers are offered a blueprint for their entire research project from data preparation to model selection and diagnostics. Engaging, easy to read, functional and packed with enlightening examples, ‘hands-on’ exercises, conversations with key scholars and resources for both students and instructors, this text allows researchers to quickly master advanced statistical techniques. It is written from the perspective of the ‘user’, making it suitable as both a self-learning tool and graduate-level textbook. Also included are up-to-date innovations in the field, including advancements in the assessment of model fit, unobserved heterogeneity, recurrent events and multilevel event history models. Practical instructions are also included for using the statistical programs of R, STATA and SPSS, enabling readers to replicate the examples described in the text.
Author | : Roger Koenker |
Publisher | : CRC Press |
Total Pages | : 739 |
Release | : 2017-10-12 |
Genre | : Mathematics |
ISBN | : 1351646567 |
Quantile regression constitutes an ensemble of statistical techniques intended to estimate and draw inferences about conditional quantile functions. Median regression, as introduced in the 18th century by Boscovich and Laplace, is a special case. In contrast to conventional mean regression that minimizes sums of squared residuals, median regression minimizes sums of absolute residuals; quantile regression simply replaces symmetric absolute loss by asymmetric linear loss. Since its introduction in the 1970's by Koenker and Bassett, quantile regression has been gradually extended to a wide variety of data analytic settings including time series, survival analysis, and longitudinal data. By focusing attention on local slices of the conditional distribution of response variables it is capable of providing a more complete, more nuanced view of heterogeneous covariate effects. Applications of quantile regression can now be found throughout the sciences, including astrophysics, chemistry, ecology, economics, finance, genomics, medicine, and meteorology. Software for quantile regression is now widely available in all the major statistical computing environments. The objective of this volume is to provide a comprehensive review of recent developments of quantile regression methodology illustrating its applicability in a wide range of scientific settings. The intended audience of the volume is researchers and graduate students across a diverse set of disciplines.
Author | : Ruth M. Pfeiffer |
Publisher | : CRC Press |
Total Pages | : 201 |
Release | : 2017-08-10 |
Genre | : Mathematics |
ISBN | : 1466561688 |
Absolute Risk: Methods and Applications in Clinical Management and Public Health provides theory and examples to demonstrate the importance of absolute risk in counseling patients, devising public health strategies, and clinical management. The book provides sufficient technical detail to allow statisticians, epidemiologists, and clinicians to build, test, and apply models of absolute risk. Features: Provides theoretical basis for modeling absolute risk, including competing risks and cause-specific and cumulative incidence regression Discusses various sampling designs for estimating absolute risk and criteria to evaluate models Provides details on statistical inference for the various sampling designs Discusses criteria for evaluating risk models and comparing risk models, including both general criteria and problem-specific expected losses in well-defined clinical and public health applications Describes many applications encompassing both disease prevention and prognosis, and ranging from counseling individual patients, to clinical decision making, to assessing the impact of risk-based public health strategies Discusses model updating, family-based designs, dynamic projections, and other topics Ruth M. Pfeiffer is a mathematical statistician and Fellow of the American Statistical Association, with interests in risk modeling, dimension reduction, and applications in epidemiology. She developed absolute risk models for breast cancer, colon cancer, melanoma, and second primary thyroid cancer following a childhood cancer diagnosis. Mitchell H. Gail developed the widely used "Gail model" for projecting the absolute risk of invasive breast cancer. He is a medical statistician with interests in statistical methods and applications in epidemiology and molecular medicine. He is a member of the National Academy of Medicine and former President of the American Statistical Association. Both are Senior Investigators in the Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health.
Author | : Gerhard Tutz |
Publisher | : Springer |
Total Pages | : 252 |
Release | : 2016-06-14 |
Genre | : Mathematics |
ISBN | : 3319281585 |
This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are explained. Each section includes a set of exercises on the respective topics. Various functions and tools for the analysis of discrete survival data are collected in the R package discSurv that accompanies the book.