Operator Theory, System Theory and Related Topics

Operator Theory, System Theory and Related Topics
Author: Daniel Alpay
Publisher: Birkhäuser
Total Pages: 568
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034882475

This volume presents the refereed proceedings of the Conference in Operator The ory in Honour of Moshe Livsic 80th Birthday, held June 29 to July 4, 1997, at the Ben-Gurion University of the Negev (Beer-Sheva, Israel) and at the Weizmann In stitute of Science (Rehovot, Israel). The volume contains papers in operator theory and its applications (understood in a very wide sense), many of them reflecting, 1 directly or indirectly, a profound impact of the work of Moshe Livsic. Moshe (Mikhail Samuilovich) Livsic was born on July 4, 1917, in the small town of Pokotilova near Uman, in the province of Kiev in the Ukraine; his family moved to Odessa when he was four years old. In 1933 he enrolled in the Department of Physics and Mathematics at the Odessa State University, where he became a student of M. G. Krein and an active participant in Krein's seminar - one of the centres where the ideas and methods of functional analysis and operator theory were being developed. Besides M. G. Krein, M. S. Livsic was strongly influenced B. Va. Levin, an outstanding specialist in the theory of analytic functions. A by deep understanding of operator theory as well as function theory and a penetrating search of connections between the two, were to become one of the landmarks of M. S. Livsic's work. M. S. Livsic defended his Ph. D.

Quantum Probability Communications: Volume X

Quantum Probability Communications: Volume X
Author: R L Hudson
Publisher: World Scientific
Total Pages: 372
Release: 1998-10-07
Genre: Science
ISBN: 9814495883

Much has changed in the world of quantum probability since the publication of the last volume in this series. Giants in the field, such as P-A Meyer, K R Parthasarathy and W von Waldenfels, have reached the age of retirement. Readers will, however, be pleased to see evidence in the present volume that Partha remains as creatively active as ever. The field itself, regarded at one time as the esoteric province of a small group of devotees, has come of age. It has attracted the enthusiastic commitment of an ever-growing army of young mathematicians and physicists, many of whom are represented here.

Data Science

Data Science
Author: Ivo D. Dinov
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 489
Release: 2021-12-06
Genre: Computers
ISBN: 3110697823

The amount of new information is constantly increasing, faster than our ability to fully interpret and utilize it to improve human experiences. Addressing this asymmetry requires novel and revolutionary scientific methods and effective human and artificial intelligence interfaces. By lifting the concept of time from a positive real number to a 2D complex time (kime), this book uncovers a connection between artificial intelligence (AI), data science, and quantum mechanics. It proposes a new mathematical foundation for data science based on raising the 4D spacetime to a higher dimension where longitudinal data (e.g., time-series) are represented as manifolds (e.g., kime-surfaces). This new framework enables the development of innovative data science analytical methods for model-based and model-free scientific inference, derived computed phenotyping, and statistical forecasting. The book provides a transdisciplinary bridge and a pragmatic mechanism to translate quantum mechanical principles, such as particles and wavefunctions, into data science concepts, such as datum and inference-functions. It includes many open mathematical problems that still need to be solved, technological challenges that need to be tackled, and computational statistics algorithms that have to be fully developed and validated. Spacekime analytics provide mechanisms to effectively handle, process, and interpret large, heterogeneous, and continuously-tracked digital information from multiple sources. The authors propose computational methods, probability model-based techniques, and analytical strategies to estimate, approximate, or simulate the complex time phases (kime directions). This allows transforming time-varying data, such as time-series observations, into higher-dimensional manifolds representing complex-valued and kime-indexed surfaces (kime-surfaces). The book includes many illustrations of model-based and model-free spacekime analytic techniques applied to economic forecasting, identification of functional brain activation, and high-dimensional cohort phenotyping. Specific case-study examples include unsupervised clustering using the Michigan Consumer Sentiment Index (MCSI), model-based inference using functional magnetic resonance imaging (fMRI) data, and model-free inference using the UK Biobank data archive. The material includes mathematical, inferential, computational, and philosophical topics such as Heisenberg uncertainty principle and alternative approaches to large sample theory, where a few spacetime observations can be amplified by a series of derived, estimated, or simulated kime-phases. The authors extend Newton-Leibniz calculus of integration and differentiation to the spacekime manifold and discuss possible solutions to some of the "problems of time". The coverage also includes 5D spacekime formulations of classical 4D spacetime mathematical equations describing natural laws of physics, as well as, statistical articulation of spacekime analytics in a Bayesian inference framework. The steady increase of the volume and complexity of observed and recorded digital information drives the urgent need to develop novel data analytical strategies. Spacekime analytics represents one new data-analytic approach, which provides a mechanism to understand compound phenomena that are observed as multiplex longitudinal processes and computationally tracked by proxy measures. This book may be of interest to academic scholars, graduate students, postdoctoral fellows, artificial intelligence and machine learning engineers, biostatisticians, econometricians, and data analysts. Some of the material may also resonate with philosophers, futurists, astrophysicists, space industry technicians, biomedical researchers, health practitioners, and the general public.

Scattering Theory in Mathematical Physics

Scattering Theory in Mathematical Physics
Author: J.A. Lavita
Publisher: Springer Science & Business Media
Total Pages: 398
Release: 2012-12-06
Genre: Science
ISBN: 9401021473

These proceedings contain lectures given at the N.A.T.O. Advanced Study Institute entitled "Scattering Theory in Mathematics and Physics" held in Denver, Colorado, June 11-29, 1973. We have assembled the main series of lectures and some presented by other participants that seemed naturally to complement them. Unfortunately the size of this volume does not allow for a full account of all the contributions made at the Conference; however, all present were pleased by the number and breadth of those topics covered in the informal afternoon sessions. The purpose of the meeting, as reflected in its title, was to examine the single topic of scattering theory in as many of its manifestations as possible, i.e. as a hub of concepts and techniques from both mathematics and physics. The format of all the topics presented here is mathematical. The physical content embraces classical and quantum mechanical scattering, N-body systems and quantum field theoretical models. Left out are such subjects as the so-called analytic S-matrix theory and phenomeno logical models for high energy scattering. We would like to thank the main lecturers for their excellent presentations and written summaries. They provided a focus for the exceptionally strong interaction among the participants and we hope that some of the coherence achieved is reflected in these published notes. We have made no attempt to unify notation.

Topics in Semidefinite and Interior-Point Methods

Topics in Semidefinite and Interior-Point Methods
Author: Panos M. Pardalos and Henry Wolkowicz
Publisher: American Mathematical Soc.
Total Pages: 276
Release:
Genre: Interior-point methods
ISBN: 9780821871256

This volume presents refereed papers presented at the workshop Semidefinite Programming and Interior-Point Approaches for Combinatorial Problems: held at The Fields Institute in May 1996. Semidefinite programming (SDP) is a generalization of linear programming (LP) in that the non-negativity constraints on the variables is replaced by a positive semidefinite constraint on matrix variables. Many of the elegant theoretical properties and powerful solution techniques follow through from LP to SDP. In particular, the primal-dual interior-point methods, which are currently so successful for LP, can be used to efficiently solve SDP problems. In addition to the theoretical and algorithmic questions, SDP has found many important applications in combinatorial optimization, control theory and other areas of mathematical programming. The papers in this volume cover a wide spectrum of recent developments in SDP. The volume would be suitable as a textbook for advanced courses in optimization. It is intended for graduate students and researchers in mathematics, computer science, engineering and operations.

Quantum Probability Communications

Quantum Probability Communications
Author: S Attal
Publisher: World Scientific
Total Pages: 314
Release: 2003
Genre: Science
ISBN: 981238975X

Lecture notes from a Summer School on Quantum Probability held at the University of Grenoble are collected in these two volumes of the QP-PQ series. The articles have been refereed and extensively revised for publication. It is hoped that both current and future students of quantum probability will be engaged, informed and inspired by the contents of these two volumes. An extensive bibliography containing the references from all the lectures is included in Volume 12.