Comments On Statistical Methodology In Medical Genetics
Download Comments On Statistical Methodology In Medical Genetics full books in PDF, epub, and Kindle. Read online free Comments On Statistical Methodology In Medical Genetics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Melinda C. Mills |
Publisher | : MIT Press |
Total Pages | : 433 |
Release | : 2020-02-18 |
Genre | : Science |
ISBN | : 0262357445 |
A comprehensive introduction to modern applied statistical genetic data analysis, accessible to those without a background in molecular biology or genetics. Human genetic research is now relevant beyond biology, epidemiology, and the medical sciences, with applications in such fields as psychology, psychiatry, statistics, demography, sociology, and economics. With advances in computing power, the availability of data, and new techniques, it is now possible to integrate large-scale molecular genetic information into research across a broad range of topics. This book offers the first comprehensive introduction to modern applied statistical genetic data analysis that covers theory, data preparation, and analysis of molecular genetic data, with hands-on computer exercises. It is accessible to students and researchers in any empirically oriented medical, biological, or social science discipline; a background in molecular biology or genetics is not required. The book first provides foundations for statistical genetic data analysis, including a survey of fundamental concepts, primers on statistics and human evolution, and an introduction to polygenic scores. It then covers the practicalities of working with genetic data, discussing such topics as analytical challenges and data management. Finally, the book presents applications and advanced topics, including polygenic score and gene-environment interaction applications, Mendelian Randomization and instrumental variables, and ethical issues. The software and data used in the book are freely available and can be found on the book's website.
Author | : Duncan C. Thomas |
Publisher | : Oxford University Press |
Total Pages | : 458 |
Release | : 2004-01-29 |
Genre | : Medical |
ISBN | : 0199748055 |
This well-organized and clearly written text has a unique focus on methods of identifying the joint effects of genes and environment on disease patterns. It follows the natural sequence of research, taking readers through the study designs and statistical analysis techniques for determining whether a trait runs in families, testing hypotheses about whether a familial tendency is due to genetic or environmental factors or both, estimating the parameters of a genetic model, localizing and ultimately isolating the responsible genes, and finally characterizing their effects in the population. Examples from the literature on the genetic epidemiology of breast and colorectal cancer, among other diseases, illustrate this process. Although the book is oriented primarily towards graduate students in epidemiology, biostatistics and human genetics, it will also serve as a comprehensive reference work for researchers. Introductory chapters on molecular biology, Mendelian genetics, epidemiology, statistics, and population genetics will help make the book accessible to those coming from one of these fields without a background in the others. It strikes a good balance between epidemiologic study designs and statistical methods of data analysis.
Author | : Andreas Ziegler |
Publisher | : John Wiley & Sons |
Total Pages | : 522 |
Release | : 2011-08-24 |
Genre | : Science |
ISBN | : 3527633669 |
A Statistical Approach to Genetic Epidemiology After studying statistics and mathematics at the University of Munich and obtaining his doctoral degree from the University of Dortmund, Andreas Ziegler received the Johann-Peter-Süssmilch-Medal of the German Association for Medical Informatics, Biometry and Epidemiology for his post-doctoral work on “Model Free Linkage Analysis of Quantitative Traits” in 1999. In 2004, he was one of the recipients of the Fritz-Linder-Forum-Award from the German Association for Surgery.
Author | : David J. Balding |
Publisher | : John Wiley & Sons |
Total Pages | : 1616 |
Release | : 2008-06-10 |
Genre | : Science |
ISBN | : 9780470997628 |
The Handbook for Statistical Genetics is widely regarded as the reference work in the field. However, the field has developed considerably over the past three years. In particular the modeling of genetic networks has advanced considerably via the evolution of microarray analysis. As a consequence the 3rd edition of the handbook contains a much expanded section on Network Modeling, including 5 new chapters covering metabolic networks, graphical modeling and inference and simulation of pedigrees and genealogies. Other chapters new to the 3rd edition include Human Population Genetics, Genome-wide Association Studies, Family-based Association Studies, Pharmacogenetics, Epigenetics, Ethic and Insurance. As with the second Edition, the Handbook includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between the chapters, tying the different areas together. With heavy use of up-to-date examples, real-life case studies and references to web-based resources, this continues to be must-have reference in a vital area of research. Edited by the leading international authorities in the field. David Balding - Department of Epidemiology & Public Health, Imperial College An advisor for our Probability & Statistics series, Professor Balding is also a previous Wiley author, having written Weight-of-Evidence for Forensic DNA Profiles, as well as having edited the two previous editions of HSG. With over 20 years teaching experience, he’s also had dozens of articles published in numerous international journals. Martin Bishop – Head of the Bioinformatics Division at the HGMP Resource Centre As well as the first two editions of HSG, Dr Bishop has edited a number of introductory books on the application of informatics to molecular biology and genetics. He is the Associate Editor of the journal Bioinformatics and Managing Editor of Briefings in Bioinformatics. Chris Cannings – Division of Genomic Medicine, University of Sheffield With over 40 years teaching in the area, Professor Cannings has published over 100 papers and is on the editorial board of many related journals. Co-editor of the two previous editions of HSG, he also authored a book on this topic.
Author | : Ben Hui Liu |
Publisher | : CRC Press |
Total Pages | : 642 |
Release | : 2017-11-22 |
Genre | : Mathematics |
ISBN | : 1351414534 |
Genomics, the mapping of the entire genetic complement of an organism, is the new frontier in biology. This handbook on the statistical issues of genomics covers current methods and the tried-and-true classical approaches.
Author | : Pak Sham |
Publisher | : Wiley |
Total Pages | : 0 |
Release | : 1997-12-08 |
Genre | : Science |
ISBN | : 9780470689288 |
Rigorous statistical analysis methods for human genetics application Statistics in Human Genetics explores the statistical analysis methods that are critical to good science. Beginning with a brief review of genes, gene structure, variation, and terminology, the book moves into analysis of segregation, genetic linkage, allelic associations, and continuity for a wide range of conditions. From the classic Hardy-Weinberg equation to advanced modeling, algorithms and more, this book provides authoritative guidance toward methods, analysis, and applications for anyone performing quantitative analysis of human genetics.
Author | : Nan M. Laird |
Publisher | : Springer Science & Business Media |
Total Pages | : 226 |
Release | : 2010-12-13 |
Genre | : Medical |
ISBN | : 1441973389 |
This book covers the statistical models and methods that are used to understand human genetics, following the historical and recent developments of human genetics. Starting with Mendel’s first experiments to genome-wide association studies, the book describes how genetic information can be incorporated into statistical models to discover disease genes. All commonly used approaches in statistical genetics (e.g. aggregation analysis, segregation, linkage analysis, etc), are used, but the focus of the book is modern approaches to association analysis. Numerous examples illustrate key points throughout the text, both of Mendelian and complex genetic disorders. The intended audience is statisticians, biostatisticians, epidemiologists and quantitatively- oriented geneticists and health scientists wanting to learn about statistical methods for genetic analysis, whether to better analyze genetic data, or to pursue research in methodology. A background in intermediate level statistical methods is required. The authors include few mathematical derivations, and the exercises provide problems for students with a broad range of skill levels. No background in genetics is assumed.
Author | : Jie Chen |
Publisher | : Springer Science & Business Media |
Total Pages | : 190 |
Release | : 2013-11-11 |
Genre | : Mathematics |
ISBN | : 1475731310 |
Recently there has been a keen interest in the statistical analysis of change point detec tion and estimation. Mainly, it is because change point problems can be encountered in many disciplines such as economics, finance, medicine, psychology, geology, litera ture, etc. , and even in our daily lives. From the statistical point of view, a change point is a place or time point such that the observations follow one distribution up to that point and follow another distribution after that point. Multiple change points problem can also be defined similarly. So the change point(s) problem is two fold: one is to de cide if there is any change (often viewed as a hypothesis testing problem), another is to locate the change point when there is a change present (often viewed as an estimation problem). The earliest change point study can be traced back to the 1950s. During the fol lowing period of some forty years, numerous articles have been published in various journals and proceedings. Many of them cover the topic of single change point in the means of a sequence of independently normally distributed random variables. Another popularly covered topic is a change point in regression models such as linear regres sion and autoregression. The methods used are mainly likelihood ratio, nonparametric, and Bayesian. Few authors also considered the change point problem in other model settings such as the gamma and exponential.
Author | : Andrea S. Foulkes |
Publisher | : Springer Science & Business Media |
Total Pages | : 264 |
Release | : 2009-04-28 |
Genre | : Science |
ISBN | : 038789554X |
Statistical genetics has become a core course in many graduate programs in public health and medicine. This book presents fundamental concepts and principles in this emerging field at a level that is accessible to students and researchers with a first course in biostatistics. Extensive examples are provided using publicly available data and the open source, statistical computing environment, R.
Author | : Cavan Reilly |
Publisher | : CRC Press |
Total Pages | : 284 |
Release | : 2009-06-19 |
Genre | : Mathematics |
ISBN | : 1420072641 |
Focusing on the roles of different segments of DNA, Statistics in Human Genetics and Molecular Biology provides a basic understanding of problems arising in the analysis of genetics and genomics. It presents statistical applications in genetic mapping, DNA/protein sequence alignment, and analyses of gene expression data from microarray experiments.