Representations and Techniques for 3D Object Recognition and Scene Interpretation

Representations and Techniques for 3D Object Recognition and Scene Interpretation
Author: Derek Hoiem
Publisher: Morgan & Claypool Publishers
Total Pages: 172
Release: 2011
Genre: Computers
ISBN: 1608457281

One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions

View Synthesis Using Stereo Vision

View Synthesis Using Stereo Vision
Author: Daniel Scharstein
Publisher: Springer
Total Pages: 173
Release: 2003-06-29
Genre: Computers
ISBN: 3540487255

Image-based rendering, as an area of overlap between computer graphics and computer vision, uses computer vision techniques to aid in sythesizing new views of scenes. Image-based rendering methods are having a substantial impact on the field of computer graphics, and also play an important role in the related field of multimedia systems, for applications such as teleconferencing, remote instruction and surgery, virtual reality and entertainment. The book develops a novel way of formalizing the view synthesis problem under the full perspective model, yielding a clean, linear warping equation. It shows new techniques for dealing with visibility issues such as partial occlusion and "holes". Furthermore, the author thoroughly re-evaluates the requirements that view synthesis places on stereo algorithms and introduces two novel stereo algorithms specifically tailored to the application of view synthesis.

Examining Optoelectronics in Machine Vision and Applications in Industry 4.0

Examining Optoelectronics in Machine Vision and Applications in Industry 4.0
Author: Sergiyenko, Oleg
Publisher: IGI Global
Total Pages: 346
Release: 2021-02-12
Genre: Computers
ISBN: 179986524X

The research and exploitation of optoelectronic properties in the industrial branch of electronics is becoming more popular each day due to the important role they play in the development of a large variety of sensors, devices, and systems for identifying, measuring, and constructing. While optoelectronics study the applications of electronic devices that source, detect, and transform light, machine vision generates and detects light in order to provide imaging-based automatic inspections and analysis for such applications as automatic object and environmental inspection, process control, and robot/mobile machine guidance in industry. Machine vision is less efficient without optoelectronics, and thus, it is important to investigate the theoretical approaches to different optoelectronic devices available for machine vision as well as current scanning technologies. Examining Optoelectronics in Machine Vision and Applications in Industry 4.0 focuses on the examination of emerging technologies for the design, fabrication, and implementation of optoelectronic sensors, devices, and systems in a machine vision approach to support industrial, commercial, and scientific applications. The book covers topics such as the design, fabrication, and implementation of sensors and devices as well as the development viewpoint of optoelectronic systems and artificial vision techniques using optoelectronic devices. The interaction and informational communication between all these mentioned devices in the complex solution of the same task is the subject of modern challenges in Industry 4.0. Thus, this book supports engineers, technology developers, academicians, researchers, and students who seek machine vision techniques for detection, measurement, and 3D reconstruction.

Artificial Intelligence and Machine Learning for Open-world Novelty

Artificial Intelligence and Machine Learning for Open-world Novelty
Author:
Publisher: Elsevier
Total Pages: 378
Release: 2024-02-20
Genre: Computers
ISBN: 0323999298

Advances in Computers, Volume presents innovations in computer hardware, software, theory, design and applications, with this updated volume including new chapters on - Contains novel subject matter that is relevant to computer science - Includes the expertise of contributing authors - Presents an easy to comprehend writing style

Computer Vision – ECCV 2016

Computer Vision – ECCV 2016
Author: Bastian Leibe
Publisher: Springer
Total Pages: 902
Release: 2016-09-16
Genre: Computers
ISBN: 3319464930

The eight-volume set comprising LNCS volumes 9905-9912 constitutes the refereed proceedings of the 14th European Conference on Computer Vision, ECCV 2016, held in Amsterdam, The Netherlands, in October 2016. The 415 revised papers presented were carefully reviewed and selected from 1480 submissions. The papers cover all aspects of computer vision and pattern recognition such as 3D computer vision; computational photography, sensing and display; face and gesture; low-level vision and image processing; motion and tracking; optimization methods; physicsbased vision, photometry and shape-from-X; recognition: detection, categorization, indexing, matching; segmentation, grouping and shape representation; statistical methods and learning; video: events, activities and surveillance; applications. They are organized in topical sections on detection, recognition and retrieval; scene understanding; optimization; image and video processing; learning; action activity and tracking; 3D; and 9 poster sessions.

Robotic Vision: Technologies for Machine Learning and Vision Applications

Robotic Vision: Technologies for Machine Learning and Vision Applications
Author: Garcia-Rodriguez, Jose
Publisher: IGI Global
Total Pages: 535
Release: 2012-12-31
Genre: Technology & Engineering
ISBN: 1466627034

Robotic systems consist of object or scene recognition, vision-based motion control, vision-based mapping, and dense range sensing, and are used for identification and navigation. As these computer vision and robotic connections continue to develop, the benefits of vision technology including savings, improved quality, reliability, safety, and productivity are revealed. Robotic Vision: Technologies for Machine Learning and Vision Applications is a comprehensive collection which highlights a solid framework for understanding existing work and planning future research. This book includes current research on the fields of robotics, machine vision, image processing and pattern recognition that is important to applying machine vision methods in the real world.

Depth Map and 3D Imaging Applications: Algorithms and Technologies

Depth Map and 3D Imaging Applications: Algorithms and Technologies
Author: Malik, Aamir Saeed
Publisher: IGI Global
Total Pages: 647
Release: 2011-11-30
Genre: Computers
ISBN: 161350327X

Over the last decade, significant progress has been made in 3D imaging research. As a result, 3D imaging methods and techniques are being employed for various applications, including 3D television, intelligent robotics, medical imaging, and stereovision. Depth Map and 3D Imaging Applications: Algorithms and Technologies present various 3D algorithms developed in the recent years and to investigate the application of 3D methods in various domains. Containing five sections, this book offers perspectives on 3D imaging algorithms, 3D shape recovery, stereoscopic vision and autostereoscopic vision, 3D vision for robotic applications, and 3D imaging applications. This book is an important resource for professionals, scientists, researchers, academics, and software engineers in image/video processing and computer vision.

Cognitive Computing and Cyber Physical Systems

Cognitive Computing and Cyber Physical Systems
Author: Nishu Gupta
Publisher: Springer Nature
Total Pages: 275
Release: 2023-03-24
Genre: Technology & Engineering
ISBN: 3031289757

This proceedings constitutes the post-conference proceedings of the 3rd EAI International Conference on Cognitive Computing and Cyber Physical Systems, IC4S 2022, held at Vishnu Institute of Technology, Bhimavaram in Andhra Pradesh, India, in November 26-27, 2022. The theme of IC4S 2022 was: cognitive computing approaches with data mining and machine learning techniques. The 22 full papers were carefully reviewed and selected from 88 submissions. The papers are clustered in thematical issues as follows: machine learning and its applications; cyber security and networking; image processing; IoT applications; smart city eco-system and communications.

Deep Learning with Python

Deep Learning with Python
Author: Nikhil Ketkar
Publisher: Apress
Total Pages: 235
Release: 2017-04-18
Genre: Computers
ISBN: 1484227662

Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to deep learning frameworks such as Keras, Theano, and Caffe. The practicalities of these frameworks is often acquired by practitioners by reading source code, manuals, and posting questions on community forums, which tends to be a slow and a painful process. Deep Learning with Python allows you to ramp up to such practical know-how in a short period of time and focus more on the domain, models, and algorithms. This book briefly covers the mathematical prerequisites and fundamentals of deep learning, making this book a good starting point for software developers who want to get started in deep learning. A brief survey of deep learning architectures is also included. Deep Learning with Python also introduces you to key concepts of automatic differentiation and GPU computation which, while not central to deep learning, are critical when it comes to conducting large scale experiments. What You Will Learn Leverage deep learning frameworks in Python namely, Keras, Theano, and Caffe Gain the fundamentals of deep learning with mathematical prerequisites Discover the practical considerations of large scale experiments Take deep learning models to production Who This Book Is For Software developers who want to try out deep learning as a practical solution to a particular problem. Software developers in a data science team who want to take deep learning models developed by data scientists to production.