Combinatorial Structures in Algebra and Geometry

Combinatorial Structures in Algebra and Geometry
Author: Dumitru I. Stamate
Publisher: Springer Nature
Total Pages: 182
Release: 2020-09-01
Genre: Mathematics
ISBN: 3030521117

This proceedings volume presents selected, peer-reviewed contributions from the 26th National School on Algebra, which was held in Constanța, Romania, on August 26-September 1, 2018. The works cover three fields of mathematics: algebra, geometry and discrete mathematics, discussing the latest developments in the theory of monomial ideals, algebras of graphs and local positivity of line bundles. Whereas interactions between algebra and geometry go back at least to Hilbert, the ties to combinatorics are much more recent and are subject of immense interest at the forefront of contemporary mathematics research. Transplanting methods between different branches of mathematics has proved very fruitful in the past – for example, the application of fixed point theorems in topology to solving nonlinear differential equations in analysis. Similarly, combinatorial structures, e.g., Newton-Okounkov bodies, have led to significant advances in our understanding of the asymptotic properties of line bundles in geometry and multiplier ideals in algebra. This book is intended for advanced graduate students, young scientists and established researchers with an interest in the overlaps between different fields of mathematics. A volume for the 24th edition of this conference was previously published with Springer under the title "Multigraded Algebra and Applications" (ISBN 978-3-319-90493-1).

Combinatorics and Finite Geometry

Combinatorics and Finite Geometry
Author: Steven T. Dougherty
Publisher: Springer Nature
Total Pages: 374
Release: 2020-10-30
Genre: Mathematics
ISBN: 3030563952

This undergraduate textbook is suitable for introductory classes in combinatorics and related topics. The book covers a wide range of both pure and applied combinatorics, beginning with the very basics of enumeration and then going on to Latin squares, graphs and designs. The latter topic is closely related to finite geometry, which is developed in parallel. Applications to probability theory, algebra, coding theory, cryptology and combinatorial game theory comprise the later chapters. Throughout the book, examples and exercises illustrate the material, and the interrelations between the various topics is emphasized. Readers looking to take first steps toward the study of combinatorics, finite geometry, design theory, coding theory, or cryptology will find this book valuable. Essentially self-contained, there are very few prerequisites aside from some mathematical maturity, and the little algebra required is covered in the text. The book is also a valuable resource for anyone interested in discrete mathematics as it ties together a wide variety of topics.

Combinatorial Algebraic Topology

Combinatorial Algebraic Topology
Author: Dimitry Kozlov
Publisher: Springer Science & Business Media
Total Pages: 416
Release: 2008-01-08
Genre: Mathematics
ISBN: 9783540730514

This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.

Combinatorial Geometry with Applications to Field Theory

Combinatorial Geometry with Applications to Field Theory
Author: Linfan Mao
Publisher: Infinite Study
Total Pages: 499
Release: 2009
Genre: Mathematics
ISBN: 1599731002

This monograph is motivated with surveying mathematics and physics by CC conjecture, i.e., a mathematical science can be reconstructed from or made by combinatorialization. Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, gravitational field, quantum fields with their combinatorial generalization, also with discussions on fundamental questions in epistemology. All of these are valuable for researchers in combinatorics, topology, differential geometry, gravitational or quantum fields.

Groups, Combinatorics and Geometry

Groups, Combinatorics and Geometry
Author: Martin W. Liebeck
Publisher: Cambridge University Press
Total Pages: 505
Release: 1992-09-10
Genre: Mathematics
ISBN: 0521406854

This volume contains a collection of papers on the subject of the classification of finite simple groups.

Algebraic And Geometric Combinatorics On Lattice Polytopes - Proceedings Of The Summer Workshop On Lattice Polytopes

Algebraic And Geometric Combinatorics On Lattice Polytopes - Proceedings Of The Summer Workshop On Lattice Polytopes
Author: Takayuki Hibi
Publisher: World Scientific
Total Pages: 476
Release: 2019-05-30
Genre: Mathematics
ISBN: 9811200491

This volume consists of research papers and expository survey articles presented by the invited speakers of the Summer Workshop on Lattice Polytopes. Topics include enumerative, algebraic and geometric combinatorics on lattice polytopes, topological combinatorics, commutative algebra and toric varieties.Readers will find that this volume showcases current trends on lattice polytopes and stimulates further developments of many research areas surrounding this field. With the survey articles, research papers and open problems, this volume provides its fundamental materials for graduate students to learn and researchers to find exciting activities and avenues for further exploration on lattice polytopes.

Combinatorial and Computational Geometry

Combinatorial and Computational Geometry
Author: Jacob E. Goodman
Publisher: Cambridge University Press
Total Pages: 640
Release: 2005-08-08
Genre: Computers
ISBN: 9780521848626

This 2005 book deals with interest topics in Discrete and Algorithmic aspects of Geometry.

Combinatorics of Coxeter Groups

Combinatorics of Coxeter Groups
Author: Anders Bjorner
Publisher: Springer Science & Business Media
Total Pages: 371
Release: 2006-02-25
Genre: Mathematics
ISBN: 3540275967

Includes a rich variety of exercises to accompany the exposition of Coxeter groups Coxeter groups have already been exposited from algebraic and geometric perspectives, but this book will be presenting the combinatorial aspects of Coxeter groups

Multigraded Algebra and Applications

Multigraded Algebra and Applications
Author: Viviana Ene
Publisher: Springer
Total Pages: 173
Release: 2018-06-07
Genre: Mathematics
ISBN: 3319904930

This volume contains research papers and surveys reflecting the topics discussed at the EMS Summer School on Multigraded Algebra and Applications held in Romania in August 2016. The school, which served as the 24th National School on Algebra, presented the main research directions of combinatorial commutative algebra with a strong focus on its applications in combinatorics, statistics, and biology. Recent progress in the field has led to new insights and suggested algebraic techniques for solving real-world data analysis problems. The summer school and resulting proceedings volume have raised numerous novel questions and encouraged a more interdisciplinary approach for young researchers when considering problems in pure and applied mathematical research. Featured topics in this volume include toric rings, binomial edge ideals, Betti numbers for numerical semigroup rings, and Waldschmidt constants. Researchers and graduate students interested in the developments of the field will find this book useful for their studies.