Combinatorial Network Theory
Download Combinatorial Network Theory full books in PDF, epub, and Kindle. Read online free Combinatorial Network Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Bolian Liu |
Publisher | : Springer Science & Business Media |
Total Pages | : 317 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 1475731655 |
Combinatorics and Matrix Theory have a symbiotic, or mutually beneficial, relationship. This relationship is discussed in my paper The symbiotic relationship of combinatorics and matrix theoryl where I attempted to justify this description. One could say that a more detailed justification was given in my book with H. J. Ryser entitled Combinatorial Matrix Theon? where an attempt was made to give a broad picture of the use of combinatorial ideas in matrix theory and the use of matrix theory in proving theorems which, at least on the surface, are combinatorial in nature. In the book by Liu and Lai, this picture is enlarged and expanded to include recent developments and contributions of Chinese mathematicians, many of which have not been readily available to those of us who are unfamiliar with Chinese journals. Necessarily, there is some overlap with the book Combinatorial Matrix Theory. Some of the additional topics include: spectra of graphs, eulerian graph problems, Shannon capacity, generalized inverses of Boolean matrices, matrix rearrangements, and matrix completions. A topic to which many Chinese mathematicians have made substantial contributions is the combinatorial analysis of powers of nonnegative matrices, and a large chapter is devoted to this topic. This book should be a valuable resource for mathematicians working in the area of combinatorial matrix theory. Richard A. Brualdi University of Wisconsin - Madison 1 Linear Alg. Applies., vols. 162-4, 1992, 65-105 2Camhridge University Press, 1991.
Author | : Ding-Zhu Du |
Publisher | : Springer Science & Business Media |
Total Pages | : 219 |
Release | : 2013-04-09 |
Genre | : Mathematics |
ISBN | : 1475724918 |
A basic problem for the interconnection of communications media is to design interconnection networks for specific needs. For example, to minimize delay and to maximize reliability, networks are required that have minimum diameter and maximum connectivity under certain conditions. The book provides a recent solution to this problem. The subject of all five chapters is the interconnection problem. The first two chapters deal with Cayley digraphs which are candidates for networks of maximum connectivity with given degree and number of nodes. Chapter 3 addresses Bruijn digraphs, Kautz digraphs, and their generalizations, which are candidates for networks of minimum diameter and maximum connectivity with given degree and number of nodes. Chapter 4 studies double loop networks, and Chapter 5 considers broadcasting and the Gossiping problem. All the chapters emphasize the combinatorial aspects of network theory. Audience: A vital reference for graduate students and researchers in applied mathematics and theoretical computer science.
Author | : Krishnaiyan "KT" Thulasiraman |
Publisher | : CRC Press |
Total Pages | : 1217 |
Release | : 2016-01-05 |
Genre | : Computers |
ISBN | : 1420011073 |
The fusion between graph theory and combinatorial optimization has led to theoretically profound and practically useful algorithms, yet there is no book that currently covers both areas together. Handbook of Graph Theory, Combinatorial Optimization, and Algorithms is the first to present a unified, comprehensive treatment of both graph theory and c
Author | : John Harris |
Publisher | : Springer Science & Business Media |
Total Pages | : 392 |
Release | : 2009-04-03 |
Genre | : Mathematics |
ISBN | : 0387797114 |
These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.
Author | : Eugene Lawler |
Publisher | : Courier Corporation |
Total Pages | : 404 |
Release | : 2012-10-16 |
Genre | : Mathematics |
ISBN | : 048614366X |
Perceptive text examines shortest paths, network flows, bipartite and nonbipartite matching, matroids and the greedy algorithm, matroid intersections, and the matroid parity problems. Suitable for courses in combinatorial computing and concrete computational complexity.
Author | : Jagdish N. Srivastava |
Publisher | : Elsevier |
Total Pages | : 476 |
Release | : 2014-05-12 |
Genre | : Biography & Autobiography |
ISBN | : 1483278174 |
A Survey of Combinatorial Theory covers the papers presented at the International Symposium on Combinatorial Mathematics and its Applications, held at Colorado State University (CSU), Fort Collins, Colorado on September 9-11, 1971. The book focuses on the principles, operations, and approaches involved in combinatorial theory, including the Bose-Nelson sorting problem, Golay code, and Galois geometries. The selection first ponders on classical and modern topics in finite geometrical structures; balanced hypergraphs and applications to graph theory; and strongly regular graph derived from the perfect ternary Golay code. Discussions focus on perfect ternary Golay code, finite projective and affine planes, Galois geometries, and other geometric structures. The book then examines the characterization problems of combinatorial graph theory, line-minimal graphs with cyclic group, circle geometry in higher dimensions, and Cayley diagrams and regular complex polygons. The text discusses combinatorial problems in finite Abelian groups, dissection graphs of planar point sets, combinatorial problems and results in fractional replication, Bose-Nelson sorting problem, and some combinatorial aspects of coding theory. The text also reviews the enumerative theory of planar maps, balanced arrays and orthogonal arrays, existence of resolvable block designs, and combinatorial problems in communication networks. The selection is a valuable source of information for mathematicians and researchers interested in the combinatorial theory.
Author | : Jonathan L. Gross |
Publisher | : CRC Press |
Total Pages | : 664 |
Release | : 2016-04-19 |
Genre | : Computers |
ISBN | : 1584887443 |
This combinatorics text provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. It presents the computer and software algorithms in pseudo-code and incorporates definitions, theorems, proofs, examples, and nearly 300 illustrations as pedagogical elements of the exposition. Numerous problems, solutions, and hints reinforce basic skills and assist with creative problem solving. The author also offers a website with extensive graph theory informational resources as well as a computational engine to help with calculations for some of the exercises.
Author | : Takuro Fukunaga |
Publisher | : Springer |
Total Pages | : 126 |
Release | : 2017-10-02 |
Genre | : Computers |
ISBN | : 9811061475 |
Covering network designs, discrete convex analysis, facility location and clustering problems, matching games, and parameterized complexity, this book discusses theoretical aspects of combinatorial optimization and graph algorithms. Contributions are by renowned researchers who attended NII Shonan meetings on this essential topic. The collection contained here provides readers with the outcome of the authors’ research and productive meetings on this dynamic area, ranging from computer science and mathematics to operations research. Networks are ubiquitous in today's world: the Web, online social networks, and search-and-query click logs can lead to a graph that consists of vertices and edges. Such networks are growing so fast that it is essential to design algorithms to work for these large networks. Graph algorithms comprise an area in computer science that works to design efficient algorithms for networks. Here one can work on theoretical or practical problems where implementation of an algorithm for large networks is needed. In two of the chapters, recent results in graph matching games and fixed parameter tractability are surveyed. Combinatorial optimization is an intersection of operations research and mathematics, especially discrete mathematics, which deals with new questions and new problems, attempting to find an optimum object from a finite set of objects. Most problems in combinatorial optimization are not tractable (i.e., NP-hard). Therefore it is necessary to design an approximation algorithm for them. To tackle these problems requires the development and combination of ideas and techniques from diverse mathematical areas including complexity theory, algorithm theory, and matroids as well as graph theory, combinatorics, convex and nonlinear optimization, and discrete and convex geometry. Overall, the book presents recent progress in facility location, network design, and discrete convex analysis.
Author | : George Polya |
Publisher | : Springer Science & Business Media |
Total Pages | : 202 |
Release | : 2013-11-27 |
Genre | : Science |
ISBN | : 1475711018 |
In the winter of 1978, Professor George P61ya and I jointly taught Stanford University's introductory combinatorics course. This was a great opportunity for me, as I had known of Professor P61ya since having read his classic book, How to Solve It, as a teenager. Working with P6lya, who ·was over ninety years old at the time, was every bit as rewarding as I had hoped it would be. His creativity, intelligence, warmth and generosity of spirit, and wonderful gift for teaching continue to be an inspiration to me. Combinatorics is one of the branches of mathematics that play a crucial role in computer sCience, since digital computers manipulate discrete, finite objects. Combinatorics impinges on computing in two ways. First, the properties of graphs and other combinatorial objects lead directly to algorithms for solving graph-theoretic problems, which have widespread application in non-numerical as well as in numerical computing. Second, combinatorial methods provide many analytical tools that can be used for determining the worst-case and expected performance of computer algorithms. A knowledge of combinatorics will serve the computer scientist well. Combinatorics can be classified into three types: enumerative, eXistential, and constructive. Enumerative combinatorics deals with the counting of combinatorial objects. Existential combinatorics studies the existence or nonexistence of combinatorial configurations.
Author | : Charles J. Colbourn |
Publisher | : Oxford University Press, USA |
Total Pages | : 188 |
Release | : 1987 |
Genre | : Computers |
ISBN | : |
This book develops combinatorial tools which are useful for reliability analysis, as demonstrated with a probabilistic network model. Basic results in combinatorial enumeration are reviewed, along with classical theorems on connectivity and cutsets. More developed analysis involves extremal set theory, matroid theory, and polyhedral combinatorics, among other themes. The presentation includes proofs or their outlines for most of the main theorems, with the aim of highlighting combinatorial ideas. Details of relevant work are presented wherever feasible. The work is intended for advanced mathematics students and computer science specialists.