Combinatorial Computational Mathematics
Download Combinatorial Computational Mathematics full books in PDF, epub, and Kindle. Read online free Combinatorial Computational Mathematics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ki Hang Kim |
Publisher | : World Scientific |
Total Pages | : 286 |
Release | : 2001-06-19 |
Genre | : Mathematics |
ISBN | : 9814490687 |
This book describes and summarizes past work in important areas of combinatorics and computation, as well as gives directions for researchers working in these areas in the 21st century. It contains primarily survey papers and presents original research by Peter Fishburn, Jim Ho Kwak, Jaeun Lee, K H Kim, F W Roush and Susan Williams. The papers deal with some of the most exciting and promising developments in the areas of coding theory in relation to number theory, lattice theory and its applications, graph theory and its applications, topological techniques in combinatorics, symbolic dynamics and mathematical social science.
Author | : Jacob E. Goodman |
Publisher | : Cambridge University Press |
Total Pages | : 640 |
Release | : 2005-08-08 |
Genre | : Computers |
ISBN | : 9780521848626 |
This 2005 book deals with interest topics in Discrete and Algorithmic aspects of Geometry.
Author | : Raina Robeva |
Publisher | : Academic Press |
Total Pages | : 436 |
Release | : 2018-10-08 |
Genre | : Mathematics |
ISBN | : 0128140690 |
Algebraic and Combinatorial Computational Biology introduces students and researchers to a panorama of powerful and current methods for mathematical problem-solving in modern computational biology. Presented in a modular format, each topic introduces the biological foundations of the field, covers specialized mathematical theory, and concludes by highlighting connections with ongoing research, particularly open questions. The work addresses problems from gene regulation, neuroscience, phylogenetics, molecular networks, assembly and folding of biomolecular structures, and the use of clustering methods in biology. A number of these chapters are surveys of new topics that have not been previously compiled into one unified source. These topics were selected because they highlight the use of technique from algebra and combinatorics that are becoming mainstream in the life sciences. - Integrates a comprehensive selection of tools from computational biology into educational or research programs - Emphasizes practical problem-solving through multiple exercises, projects and spinoff computational simulations - Contains scalable material for use in undergraduate and graduate-level classes and research projects - Introduces the reader to freely-available professional software - Supported by illustrative datasets and adaptable computer code
Author | : Dimitry Kozlov |
Publisher | : Springer Science & Business Media |
Total Pages | : 416 |
Release | : 2008-01-08 |
Genre | : Mathematics |
ISBN | : 9783540730514 |
This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.
Author | : Sriram Pemmaraju |
Publisher | : Cambridge University Press |
Total Pages | : 615 |
Release | : 2009-10-15 |
Genre | : Computers |
ISBN | : 1107268710 |
This book was first published in 2003. Combinatorica, an extension to the popular computer algebra system Mathematica®, is the most comprehensive software available for teaching and research applications of discrete mathematics, particularly combinatorics and graph theory. This book is the definitive reference/user's guide to Combinatorica, with examples of all 450 Combinatorica functions in action, along with the associated mathematical and algorithmic theory. The authors cover classical and advanced topics on the most important combinatorial objects: permutations, subsets, partitions, and Young tableaux, as well as all important areas of graph theory: graph construction operations, invariants, embeddings, and algorithmic graph theory. In addition to being a research tool, Combinatorica makes discrete mathematics accessible in new and exciting ways to a wide variety of people, by encouraging computational experimentation and visualization. The book contains no formal proofs, but enough discussion to understand and appreciate all the algorithms and theorems it contains.
Author | : E. S. Page |
Publisher | : CUP Archive |
Total Pages | : 228 |
Release | : 1979-04-19 |
Genre | : Computers |
ISBN | : 9780521224277 |
This book describes algorithms of mathematical methods and illustrates their application with examples. The mathematical background needed is elementary algebra and calculus.
Author | : Douglas B. West |
Publisher | : Cambridge University Press |
Total Pages | : 990 |
Release | : 2021 |
Genre | : Mathematics |
ISBN | : 1107058589 |
This is the most readable and thorough graduate textbook and reference for combinatorics, covering enumeration, graphs, sets, and methods.
Author | : Jonathan L. Gross |
Publisher | : CRC Press |
Total Pages | : 664 |
Release | : 2016-04-19 |
Genre | : Computers |
ISBN | : 1584887443 |
This combinatorics text provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. It presents the computer and software algorithms in pseudo-code and incorporates definitions, theorems, proofs, examples, and nearly 300 illustrations as pedagogical elements of the exposition. Numerous problems, solutions, and hints reinforce basic skills and assist with creative problem solving. The author also offers a website with extensive graph theory informational resources as well as a computational engine to help with calculations for some of the exercises.
Author | : Günter Ewald |
Publisher | : Springer Science & Business Media |
Total Pages | : 378 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461240441 |
The book is an introduction to the theory of convex polytopes and polyhedral sets, to algebraic geometry, and to the connections between these fields, known as the theory of toric varieties. The first part of the book covers the theory of polytopes and provides large parts of the mathematical background of linear optimization and of the geometrical aspects in computer science. The second part introduces toric varieties in an elementary way.
Author | : Herbert Edelsbrunner |
Publisher | : Springer Science & Business Media |
Total Pages | : 446 |
Release | : 1987-07-31 |
Genre | : Computers |
ISBN | : 9783540137221 |
Computational geometry as an area of research in its own right emerged in the early seventies of this century. Right from the beginning, it was obvious that strong connections of various kinds exist to questions studied in the considerably older field of combinatorial geometry. For example, the combinatorial structure of a geometric problem usually decides which algorithmic method solves the problem most efficiently. Furthermore, the analysis of an algorithm often requires a great deal of combinatorial knowledge. As it turns out, however, the connection between the two research areas commonly referred to as computa tional geometry and combinatorial geometry is not as lop-sided as it appears. Indeed, the interest in computational issues in geometry gives a new and con structive direction to the combinatorial study of geometry. It is the intention of this book to demonstrate that computational and com binatorial investigations in geometry are doomed to profit from each other. To reach this goal, I designed this book to consist of three parts, acorn binatorial part, a computational part, and one that presents applications of the results of the first two parts. The choice of the topics covered in this book was guided by my attempt to describe the most fundamental algorithms in computational geometry that have an interesting combinatorial structure. In this early stage geometric transforms played an important role as they reveal connections between seemingly unrelated problems and thus help to structure the field.