Collocation Methods For Systems Of Ordinary Differential Equations And For Parabolic Partial Differential Equations
Download Collocation Methods For Systems Of Ordinary Differential Equations And For Parabolic Partial Differential Equations full books in PDF, epub, and Kindle. Read online free Collocation Methods For Systems Of Ordinary Differential Equations And For Parabolic Partial Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Nonlinear Systems
Author | : Dongbin Lee |
Publisher | : BoD – Books on Demand |
Total Pages | : 366 |
Release | : 2016-10-19 |
Genre | : Mathematics |
ISBN | : 9535127144 |
The book consists mainly of two parts: Chapter 1 - Chapter 7 and Chapter 8 - Chapter 14. Chapter 1 and Chapter 2 treat design techniques based on linearization of nonlinear systems. An analysis of nonlinear system over quantum mechanics is discussed in Chapter 3. Chapter 4 to Chapter 7 are estimation methods using Kalman filtering while solving nonlinear control systems using iterative approach. Optimal approaches are discussed in Chapter 8 with retarded control of nonlinear system in singular situation, and Chapter 9 extends optimal theory to H-infinity control for a nonlinear control system.Chapters 10 and 11 present the control of nonlinear dynamic systems, twin-rotor helicopter and 3D crane system, which are both underactuated, cascaded dynamic systems. Chapter 12 applies controls to antisynchronization/synchronization in the chaotic models based on Lyapunov exponent theorem, and Chapter 13 discusses developed stability analytic approaches in terms of Lyapunov stability. The analysis of economic activities, especially the relationship between stock return and economic growth, is presented in Chapter 14.
Numerical Methods for Elliptic and Parabolic Partial Differential Equations
Author | : Peter Knabner |
Publisher | : Springer Science & Business Media |
Total Pages | : 437 |
Release | : 2003-06-26 |
Genre | : Mathematics |
ISBN | : 038795449X |
This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.
Defect Correction Methods
Author | : K. Böhmer |
Publisher | : Springer Science & Business Media |
Total Pages | : 247 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3709170230 |
Ten years ago, the term "defect correction" was introduced to characterize a class of methods for the improvement of an approximate solution of an operator equation. This class includes many well-known techniques (e.g. Newton's method) but also some novel approaches which have turned out to be quite efficient. Meanwhile a large number of papers and reports, scattered over many journals and institutions, have appeared in this area. Therefore, a working conference on "Error Asymptotics and Defect Corrections" was organized by K. Bohmer, V. Pereyra and H. J. Stetter at the Mathematisches Forschungsinstitut Oberwolfach in July 1983, a meeting which aimed at bringing together a good number of the scientists who are active in this field. Altogether 26 persons attended, whose interests covered a wide spectrum from theoretical analyses to applications where defect corrections may be utilized; a list of the participants may be found in the Appendix. Most of the colleagues who presented formal lectures at the meeting agreed to publish their reports in this volume. It would be presumptuous to call this book a state-of-the-art report in defect corrections. It is rather a collection of snapshots of activities which have been going on in a number of segments on the frontiers of this area. No systematic coverage has been attempted. Some articles focus strongly on the basic concepts of defect correction; but in the majority of the contributions the defect correction ideas appear rather as instruments for the attainment of some specified goal.
Numerical Approximation of Partial Differential Equations
Author | : Alfio Quarteroni |
Publisher | : Springer Science & Business Media |
Total Pages | : 551 |
Release | : 2009-02-11 |
Genre | : Mathematics |
ISBN | : 3540852689 |
Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).
Mathematics for Large Scale Computing
Author | : Julio Diaz |
Publisher | : CRC Press |
Total Pages | : 362 |
Release | : 2020-06-29 |
Genre | : Mathematics |
ISBN | : 1000657639 |
During recent years a great deal of interest has been devoted to large scale computing applications. This has occurred in great part because of the introduction of advanced high performance computer architectures. The book contains survey articles as well as chapters on specific research applications, development and analysis of numerical algorithms, and performance evaluation of algorithms on advanced architectures. The effect of specialized architectural features on the performance of large scale computation is also considered by several authors. Several areas of applications are represented, including the numerical solution of partial differential equations, iterative techniques for large structured problems, the numerical solution of boundary value problems for ordinary differential equations, numerical optimization, and numerical quadrature. Mathematical issues in computer architecture are also presented, including the description of grey codes for generalized hypercubes. The results presented in this volume give, in our opinion, a representative picture of today’s state of the art in several aspects of large scale computing.
Nonlinear Partial Differential Equations for Scientists and Engineers
Author | : Lokenath Debnath |
Publisher | : Springer Science & Business Media |
Total Pages | : 602 |
Release | : 2013-11-11 |
Genre | : Mathematics |
ISBN | : 1489928464 |
This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from diverse fields. Methods and properties of solutions, along with their physical significance, help make the book more useful for a diverse readership. The book is an exceptionally complete text/reference for graduates, researchers, and professionals in mathematics, physics, and engineering.
Miscellaneous Publication - National Bureau of Standards
Author | : United States. National Bureau of Standards |
Publisher | : |
Total Pages | : 476 |
Release | : 1965 |
Genre | : Weights and measures |
ISBN | : |