Cohen-Macaulay Rings

Cohen-Macaulay Rings
Author: Winfried Bruns
Publisher: Cambridge University Press
Total Pages: 471
Release: 1998-06-18
Genre: Mathematics
ISBN: 0521566746

In the last two decades Cohen-Macaulay rings and modules have been central topics in commutative algebra. This book meets the need for a thorough, self-contained introduction to the homological and combinatorial aspects of the theory of Cohen-Macaulay rings, Gorenstein rings, local cohomology, and canonical modules. A separate chapter is devoted to Hilbert functions (including Macaulay's theorem) and numerical invariants derived from them. The authors emphasize the study of explicit, specific rings, making the presentation as concrete as possible. So the general theory is applied to Stanley-Reisner rings, semigroup rings, determinantal rings, and rings of invariants. Their connections with combinatorics are highlighted, e.g. Stanley's upper bound theorem or Ehrhart's reciprocity law for rational polytopes. The final chapters are devoted to Hochster's theorem on big Cohen-Macaulay modules and its applications, including Peskine-Szpiro's intersection theorem, the Evans-Griffith syzygy theorem, bounds for Bass numbers, and tight closure. Throughout each chapter the authors have supplied many examples and exercises which, combined with the expository style, will make the book very useful for graduate courses in algebra. As the only modern, broad account of the subject it will be essential reading for researchers in commutative algebra.

Maximal Cohen-Macaulay Modules over Cohen-Macaulay Rings

Maximal Cohen-Macaulay Modules over Cohen-Macaulay Rings
Author: Y. Yoshino
Publisher: Cambridge University Press
Total Pages: 0
Release: 1990-06-28
Genre: Mathematics
ISBN: 9780521356947

The purpose of these notes is to explain in detail some topics on the intersection of commutative algebra, representation theory and singularity theory. They are based on lectures given in Tokyo, but also contain new research. It is the first cohesive account of the area and will provide a useful synthesis of recent research for algebraists.

Determinantal Rings

Determinantal Rings
Author: Winfried Bruns
Publisher: Springer
Total Pages: 246
Release: 2006-11-14
Genre: Mathematics
ISBN: 3540392742

Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law. This approach suggest (and is simplified by) the simultaneous treatment of the Schubert subvarieties of Grassmannian. Other methods have not been neglected, however. Principal radical systems are discussed in detail, and one section is devoted to each of invariant and representation theory. While the book is primarily a research monograph, it serves also as a reference source and the reader requires only the basics of commutative algebra together with some supplementary material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a vast number of notions, results, and techniques can be illustrated significantly by applying them to determinantal rings.

Cohen-Macaulay Representations

Cohen-Macaulay Representations
Author: Graham J. Leuschke
Publisher: American Mathematical Soc.
Total Pages: 390
Release: 2012-05-02
Genre: Mathematics
ISBN: 0821875817

This book is a comprehensive treatment of the representation theory of maximal Cohen-Macaulay (MCM) modules over local rings. This topic is at the intersection of commutative algebra, singularity theory, and representations of groups and algebras. Two introductory chapters treat the Krull-Remak-Schmidt Theorem on uniqueness of direct-sum decompositions and its failure for modules over local rings. Chapters 3-10 study the central problem of classifying the rings with only finitely many indecomposable MCM modules up to isomorphism, i.e., rings of finite CM type. The fundamental material--ADE/simple singularities, the double branched cover, Auslander-Reiten theory, and the Brauer-Thrall conjectures--is covered clearly and completely. Much of the content has never before appeared in book form. Examples include the representation theory of Artinian pairs and Burban-Drozd's related construction in dimension two, an introduction to the McKay correspondence from the point of view of maximal Cohen-Macaulay modules, Auslander-Buchweitz's MCM approximation theory, and a careful treatment of nonzero characteristic. The remaining seven chapters present results on bounded and countable CM type and on the representation theory of totally reflexive modules.

Steps in Commutative Algebra

Steps in Commutative Algebra
Author: R. Y. Sharp
Publisher: Cambridge University Press
Total Pages: 371
Release: 2000
Genre: Mathematics
ISBN: 0521646235

Introductory account of commutative algebra, aimed at students with a background in basic algebra.

The Geometry of Syzygies

The Geometry of Syzygies
Author: David Eisenbud
Publisher: Springer Science & Business Media
Total Pages: 254
Release: 2006-10-28
Genre: Mathematics
ISBN: 0387264566

First textbook-level account of basic examples and techniques in this area. Suitable for self-study by a reader who knows a little commutative algebra and algebraic geometry already. David Eisenbud is a well-known mathematician and current president of the American Mathematical Society, as well as a successful Springer author.

Commutative Ring Theory

Commutative Ring Theory
Author: Hideyuki Matsumura
Publisher: Cambridge University Press
Total Pages: 338
Release: 1989-05-25
Genre: Mathematics
ISBN: 9780521367646

This book explores commutative ring theory, an important a foundation for algebraic geometry and complex analytical geometry.

Topics in the Homological Theory of Modules Over Commutative Rings

Topics in the Homological Theory of Modules Over Commutative Rings
Author: Melvin Hochster
Publisher: American Mathematical Soc.
Total Pages: 86
Release: 1975
Genre: Mathematics
ISBN: 0821816748

Contains expository lectures from the CBMS Regional Conference in Mathematics held at the University of Nebraska, June 1974. This book deals mainly with developments and still open questions in the homological theory of modules over commutative (usually, Noetherian) rings.

Syzygies and Hilbert Functions

Syzygies and Hilbert Functions
Author: Irena Peeva
Publisher: CRC Press
Total Pages: 305
Release: 2007-03-20
Genre: Mathematics
ISBN: 1420050915

Hilbert functions and resolutions are both central objects in commutative algebra and fruitful tools in the fields of algebraic geometry, combinatorics, commutative algebra, and computational algebra. Spurred by recent research in this area, Syzygies and Hilbert Functions explores fresh developments in the field as well as fundamental concepts.