Click Models for Web Search

Click Models for Web Search
Author: Aleksandr Chuklin
Publisher: Morgan & Claypool Publishers
Total Pages: 117
Release: 2015-07-01
Genre: Computers
ISBN: 1627056483

With the rapid growth of web search in recent years the problem of modeling its users has started to attract more and more attention of the information retrieval community. This has several motivations. By building a model of user behavior we are essentially developing a better understanding of a user, which ultimately helps us to deliver a better search experience. A model of user behavior can also be used as a predictive device for non-observed items such as document relevance, which makes it useful for improving search result ranking. Finally, in many situations experimenting with real users is just infeasible and hence user simulations based on accurate models play an essential role in understanding the implications of algorithmic changes to search engine results or presentation changes to the search engine result page. In this survey we summarize advances in modeling user click behavior on a web search engine result page. We present simple click models as well as more complex models aimed at capturing non-trivial user behavior patterns on modern search engine result pages. We discuss how these models compare to each other, what challenges they have, and what ways there are to address these challenges. We also study the problem of evaluating click models and discuss the main applications of click models.

Click Models for Web Search

Click Models for Web Search
Author: Aleksandr Chuklin
Publisher: Springer Nature
Total Pages: 99
Release: 2022-05-31
Genre: Computers
ISBN: 3031022947

With the rapid growth of web search in recent years the problem of modeling its users has started to attract more and more attention of the information retrieval community. This has several motivations. By building a model of user behavior we are essentially developing a better understanding of a user, which ultimately helps us to deliver a better search experience. A model of user behavior can also be used as a predictive device for non-observed items such as document relevance, which makes it useful for improving search result ranking. Finally, in many situations experimenting with real users is just infeasible and hence user simulations based on accurate models play an essential role in understanding the implications of algorithmic changes to search engine results or presentation changes to the search engine result page. In this survey we summarize advances in modeling user click behavior on a web search engine result page. We present simple click models as well as more complex models aimed at capturing non-trivial user behavior patterns on modern search engine result pages. We discuss how these models compare to each other, what challenges they have, and what ways there are to address these challenges. We also study the problem of evaluating click models and discuss the main applications of click models.

Introduction to Information Retrieval

Introduction to Information Retrieval
Author: Christopher D. Manning
Publisher: Cambridge University Press
Total Pages:
Release: 2008-07-07
Genre: Computers
ISBN: 1139472100

Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.

Relevant Search

Relevant Search
Author: John Berryman
Publisher: Simon and Schuster
Total Pages: 517
Release: 2016-06-19
Genre: Computers
ISBN: 1638353611

Summary Relevant Search demystifies relevance work. Using Elasticsearch, it teaches you how to return engaging search results to your users, helping you understand and leverage the internals of Lucene-based search engines. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Users are accustomed to and expect instant, relevant search results. To achieve this, you must master the search engine. Yet for many developers, relevance ranking is mysterious or confusing. About the Book Relevant Search demystifies the subject and shows you that a search engine is a programmable relevance framework. You'll learn how to apply Elasticsearch or Solr to your business's unique ranking problems. The book demonstrates how to program relevance and how to incorporate secondary data sources, taxonomies, text analytics, and personalization. In practice, a relevance framework requires softer skills as well, such as collaborating with stakeholders to discover the right relevance requirements for your business. By the end, you'll be able to achieve a virtuous cycle of provable, measurable relevance improvements over a search product's lifetime. What's Inside Techniques for debugging relevance? Applying search engine features to real problems? Using the user interface to guide searchers? A systematic approach to relevance? A business culture focused on improving search About the Reader For developers trying to build smarter search with Elasticsearch or Solr. About the Authors Doug Turnbull is lead relevance consultant at OpenSource Connections, where he frequently speaks and blogs. John Berryman is a data engineer at Eventbrite, where he specializes in recommendations and search. Foreword author, Trey Grainger, is a director of engineering at CareerBuilder and author of Solr in Action. Table of Contents The search relevance problem Search under the hood Debugging your first relevance problem Taming tokens Basic multifield search Term-centric search Shaping the relevance function Providing relevance feedback Designing a relevance-focused search application The relevance-centered enterprise Semantic and personalized search

Search Engines

Search Engines
Author: Bruce Croft
Publisher: Pearson Higher Ed
Total Pages: 547
Release: 2011-11-21
Genre: Computers
ISBN: 0133001598

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Search Engines: Information Retrieval in Practice is ideal for introductory information retrieval courses at the undergraduate and graduate level in computer science, information science and computer engineering departments. It is also a valuable tool for search engine and information retrieval professionals. Written by a leader in the field of information retrieval, Search Engines: Information Retrieval in Practice , is designed to give undergraduate students the understanding and tools they need to evaluate, compare and modify search engines. Coverage of the underlying IR and mathematical models reinforce key concepts. The book’s numerous programming exercises make extensive use of Galago, a Java-based open source search engine.

Entity-Oriented Search

Entity-Oriented Search
Author: Krisztian Balog
Publisher: Springer
Total Pages: 358
Release: 2018-10-02
Genre: Computers
ISBN: 3319939351

This open access book covers all facets of entity-oriented search—where “search” can be interpreted in the broadest sense of information access—from a unified point of view, and provides a coherent and comprehensive overview of the state of the art. It represents the first synthesis of research in this broad and rapidly developing area. Selected topics are discussed in-depth, the goal being to establish fundamental techniques and methods as a basis for future research and development. Additional topics are treated at a survey level only, containing numerous pointers to the relevant literature. A roadmap for future research, based on open issues and challenges identified along the way, rounds out the book. The book is divided into three main parts, sandwiched between introductory and concluding chapters. The first two chapters introduce readers to the basic concepts, provide an overview of entity-oriented search tasks, and present the various types and sources of data that will be used throughout the book. Part I deals with the core task of entity ranking: given a textual query, possibly enriched with additional elements or structural hints, return a ranked list of entities. This core task is examined in a number of different variants, using both structured and unstructured data collections, and numerous query formulations. In turn, Part II is devoted to the role of entities in bridging unstructured and structured data. Part III explores how entities can enable search engines to understand the concepts, meaning, and intent behind the query that the user enters into the search box, and how they can provide rich and focused responses (as opposed to merely a list of documents)—a process known as semantic search. The final chapter concludes the book by discussing the limitations of current approaches, and suggesting directions for future research. Researchers and graduate students are the primary target audience of this book. A general background in information retrieval is sufficient to follow the material, including an understanding of basic probability and statistics concepts as well as a basic knowledge of machine learning concepts and supervised learning algorithms.

Algorithms of Oppression

Algorithms of Oppression
Author: Safiya Umoja Noble
Publisher: NYU Press
Total Pages: 245
Release: 2018-02-20
Genre: Computers
ISBN: 1479837245

Acknowledgments -- Introduction: the power of algorithms -- A society, searching -- Searching for Black girls -- Searching for people and communities -- Searching for protections from search engines -- The future of knowledge in the public -- The future of information culture -- Conclusion: algorithms of oppression -- Epilogue -- Notes -- Bibliography -- Index -- About the author

Deep Learning

Deep Learning
Author: Ian Goodfellow
Publisher: MIT Press
Total Pages: 801
Release: 2016-11-10
Genre: Computers
ISBN: 0262337371

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Models of Seizures and Epilepsy

Models of Seizures and Epilepsy
Author: Asla Pitkänen
Publisher: Academic Press
Total Pages: 1180
Release: 2017-06-14
Genre: Medical
ISBN: 012804067X

Models of Seizures and Epilepsy, Second Edition, is a valuable, practical reference for investigators who are searching for the most appropriate laboratory models to address key questions in the field. The book also provides an important background for physicians, fellows, and students, offering insight into the potential for advances in epilepsy research as well as R&D drug development. Contents include the current spectrum of models available to model different epilepsy syndromes, epilepsy in transgenic animals, comorbidities in models of epilepsy, and novel technologies to study seizures and epilepsies in animals. - Provides a comprehensive reference detailing animal models of epilepsy and seizure - Offers insights on the use of novel technologies that can be applied in experimental epilepsy research - Edited by leading experts in the field that provide not only technical reviews of these models but also conceptual critiques - Comments on the strengths and limitations of various models, including their relationship to clinical phenomenology and their value in developing better understanding and treatments

Predictive Analytics

Predictive Analytics
Author: Eric Siegel
Publisher: John Wiley & Sons
Total Pages: 368
Release: 2016-01-12
Genre: Business & Economics
ISBN: 1119153654

"Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a