Uncountably Categorical Theories

Uncountably Categorical Theories
Author: Boris Zilber
Publisher: American Mathematical Soc.
Total Pages: 132
Release:
Genre: Mathematics
ISBN: 9780821897454

The 1970s saw the appearance and development in categoricity theory of a tendency to focus on the study and description of uncountably categorical theories in various special classes defined by natural algebraic or syntactic conditions. There have thus been studies of uncountably categorical theories of groups and rings, theories of a one-place function, universal theories of semigroups, quasivarieties categorical in infinite powers, and Horn theories. In Uncountably Categorical Theories , this research area is referred to as the special classification theory of categoricity. Zilber's goal is to develop a structural theory of categoricity, using methods and results of the special classification theory, and to construct on this basis a foundation for a general classification theory of categoricity, that is, a theory aimed at describing large classes of uncountably categorical structures not restricted by any syntactic or algebraic conditions.

Model Theory and Modules

Model Theory and Modules
Author: Mike Prest
Publisher: Cambridge University Press
Total Pages: 402
Release: 1988-02-25
Genre: Mathematics
ISBN: 0521348331

In recent years the interplay between model theory and other branches of mathematics has led to many deep and intriguing results. In this, the first book on the topic, the theme is the interplay between model theory and the theory of modules. The book is intended to be a self-contained introduction to the subject and introduces the requisite model theory and module theory as it is needed. Dr Prest develops the basic ideas concerning what can be said about modules using the information which may be expressed in a first-order language. Later chapters discuss stability-theoretic aspects of modules, and structure and classification theorems over various types of rings and for certain classes of modules. Both algebraists and logicians will enjoy this account of an area in which algebra and model theory interact in a significant way. The book includes numerous examples and exercises and consequently will make an ideal introduction for graduate students coming to this subject for the first time.

Classification Theory

Classification Theory
Author: S. Shelah
Publisher: Elsevier
Total Pages: 741
Release: 1990-12-06
Genre: Computers
ISBN: 008088024X

In this research monograph, the author's work on classification and related topics are presented. This revised edition brings the book up to date with the addition of four new chapters as well as various corrections to the 1978 text.The additional chapters X - XIII present the solution to countable first order T of what the author sees as the main test of the theory. In Chapter X the Dimensional Order Property is introduced and it is shown to be a meaningful dividing line for superstable theories. In Chapter XI there is a proof of the decomposition theorems. Chapter XII is the crux of the matter: there is proof that the negation of the assumption used in Chapter XI implies that in models of T a relation can be defined which orders a large subset of m

Topics in Geometric Group Theory

Topics in Geometric Group Theory
Author: Pierre de la Harpe
Publisher: University of Chicago Press
Total Pages: 320
Release: 2000-10-15
Genre: Education
ISBN: 9780226317199

In this book, Pierre de la Harpe provides a concise and engaging introduction to geometric group theory, a new method for studying infinite groups via their intrinsic geometry that has played a major role in mathematics over the past two decades. A recognized expert in the field, de la Harpe adopts a hands-on approach, illustrating key concepts with numerous concrete examples. The first five chapters present basic combinatorial and geometric group theory in a unique and refreshing way, with an emphasis on finitely generated versus finitely presented groups. In the final three chapters, de la Harpe discusses new material on the growth of groups, including a detailed treatment of the "Grigorchuk group." Most sections are followed by exercises and a list of problems and complements, enhancing the book's value for students; problems range from slightly more difficult exercises to open research problems in the field. An extensive list of references directs readers to more advanced results as well as connections with other fields.

Logic Colloquium '03

Logic Colloquium '03
Author: Viggo Stoltenberg-Hansen
Publisher: Cambridge University Press
Total Pages: 420
Release: 2017-03-30
Genre: Mathematics
ISBN: 1108587143

Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the twenty-fourth publication in the Lecture Notes in Logic series, contains the proceedings of the European Summer Meeting of the Association for Symbolic Logic, held in Helsinki, Finland, in August 2003. These articles include an extended tutorial on generalizing finite model theory, as well as seventeen original research articles spanning all areas of mathematical logic, including proof theory, set theory, model theory, computability theory and philosophy.

Algebraic Model Theory

Algebraic Model Theory
Author: Bradd T. Hart
Publisher: Springer Science & Business Media
Total Pages: 285
Release: 2013-03-14
Genre: Mathematics
ISBN: 9401589232

Recent major advances in model theory include connections between model theory and Diophantine and real analytic geometry, permutation groups, and finite algebras. The present book contains lectures on recent results in algebraic model theory, covering topics from the following areas: geometric model theory, the model theory of analytic structures, permutation groups in model theory, the spectra of countable theories, and the structure of finite algebras. Audience: Graduate students in logic and others wishing to keep abreast of current trends in model theory. The lectures contain sufficient introductory material to be able to grasp the recent results presented.

A Shorter Model Theory

A Shorter Model Theory
Author: Wilfrid Hodges
Publisher: Cambridge University Press
Total Pages: 322
Release: 1997-04-10
Genre: Mathematics
ISBN: 9780521587136

This is an up-to-date textbook of model theory taking the reader from first definitions to Morley's theorem and the elementary parts of stability theory. Besides standard results such as the compactness and omitting types theorems, it also describes various links with algebra, including the Skolem-Tarski method of quantifier elimination, model completeness, automorphism groups and omega-categoricity, ultraproducts, O-minimality and structures of finite Morley rank. The material on back-and-forth equivalences, interpretations and zero-one laws can serve as an introduction to applications of model theory in computer science. Each chapter finishes with a brief commentary on the literature and suggestions for further reading. This book will benefit graduate students with an interest in model theory.

Generalized Descriptive Set Theory and Classification Theory

Generalized Descriptive Set Theory and Classification Theory
Author: Sy-David Friedman
Publisher: American Mathematical Soc.
Total Pages: 92
Release: 2014-06-05
Genre: Mathematics
ISBN: 0821894757

Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper the authors study the generalization where countable is replaced by uncountable. They explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. They also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. The authors' results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.

A Guide to Classical and Modern Model Theory

A Guide to Classical and Modern Model Theory
Author: Annalisa Marcja
Publisher: Springer Science & Business Media
Total Pages: 388
Release: 2003-06-30
Genre: Mathematics
ISBN: 9781402013317

This volume is easily accessible to young people and mathematicians unfamiliar with logic. It gives a terse historical picture of Model Theory and introduces the latest developments in the area. It further provides 'hands-on' proofs of elimination of quantifiers, elimination of imaginaries and other relevant matters. The book is for trainees and professional model theorists, and mathematicians working in Algebra and Geometry.