Classical Groups And Geometric Algebra
Download Classical Groups And Geometric Algebra full books in PDF, epub, and Kindle. Read online free Classical Groups And Geometric Algebra ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Larry C. Grove |
Publisher | : American Mathematical Soc. |
Total Pages | : 181 |
Release | : 2002 |
Genre | : Mathematics |
ISBN | : 0821820192 |
A graduate-level text on the classical groups: groups of matrices, or (more often) quotients of matrix groups by small normal subgroups. It pulls together into a single source the basic facts about classical groups defined over fields, together with the required geometrical background information, from first principles. The chief prerequisites are basic linear algebra and abstract algebra, including fundamentals of group theory and some Galois Theory. The author teaches at the U. of Arizona. c. Book News Inc.
Author | : Larry C. Grove |
Publisher | : John Wiley & Sons |
Total Pages | : 228 |
Release | : 2011-09-26 |
Genre | : Mathematics |
ISBN | : 1118030931 |
An authoritative, full-year course on both group theory and ordinary character theory--essential tools for mathematics and the physical sciences One of the few treatments available combining both group theory and character theory, Groups and Characters is an effective general textbook on these two fundamentally connected subjects. Presuming only a basic knowledge of abstract algebra as in a first-year graduate course, the text opens with a review of background material and then guides readers carefully through several of the most important aspects of groups and characters, concentrating mainly on finite groups. Challenging yet accessible, Groups and Characters features: * An extensive collection of examples surveying many different types of groups, including Sylow subgroups of symmetric groups, affine groups of fields, the Mathieu groups, and symplectic groups * A thorough, easy-to-follow discussion of Polya-Redfield enumeration, with applications to combinatorics * Inclusive explorations of the transfer function and normal complements, induction and restriction of characters, Clifford theory, characters of symmetric and alternating groups, Frobenius groups, and the Schur index * Illuminating accounts of several computational aspects of group theory, such as the Schreier-Sims algorithm, Todd-Coxeter coset enumeration, and algorithms for generating character tables As valuable as Groups and Characters will prove as a textbook for mathematicians, it has broader applications. With chapters suitable for use as independent review units, along with a full bibliography and index, it will be a dependable general reference for chemists, physicists, and crystallographers.
Author | : Ian R. Porteous |
Publisher | : Cambridge University Press |
Total Pages | : 309 |
Release | : 1995-10-05 |
Genre | : Mathematics |
ISBN | : 0521551773 |
The Clifford algebras of real quadratic forms and their complexifications are studied here in detail, and those parts which are immediately relevant to theoretical physics are seen in the proper broad context. Central to the work is the classification of the conjugation and reversion anti-involutions that arise naturally in the theory. It is of interest that all the classical groups play essential roles in this classification. Other features include detailed sections on conformal groups, the eight-dimensional non-associative Cayley algebra, its automorphism group, the exceptional Lie group G(subscript 2), and the triality automorphism of Spin 8. The book is designed to be suitable for the last year of an undergraduate course or the first year of a postgraduate course.
Author | : Peter B. Kleidman |
Publisher | : Cambridge University Press |
Total Pages | : 317 |
Release | : 1990-04-26 |
Genre | : Mathematics |
ISBN | : 052135949X |
With the classification of the finite simple groups complete, much work has gone into the study of maximal subgroups of almost simple groups. In this volume the authors investigate the maximal subgroups of the finite classical groups and present research into these groups as well as proving many new results. In particular, the authors develop a unified treatment of the theory of the 'geometric subgroups' of the classical groups, introduced by Aschbacher, and they answer the questions of maximality and conjugacy and obtain the precise shapes of these groups. Both authors are experts in the field and the book will be of considerable value not only to group theorists, but also to combinatorialists and geometers interested in these techniques and results. Graduate students will find it a very readable introduction to the topic and it will bring them to the very forefront of research in group theory.
Author | : |
Publisher | : Academic Press |
Total Pages | : 317 |
Release | : 1983-11-01 |
Genre | : Mathematics |
ISBN | : 0080874290 |
Author | : J. F. Humphreys |
Publisher | : Oxford University Press, USA |
Total Pages | : 296 |
Release | : 1996 |
Genre | : Language Arts & Disciplines |
ISBN | : 9780198534594 |
Each chapter ends with a summary of the material covered and notes on the history and development of group theory.
Author | : John Stillwell |
Publisher | : Springer Science & Business Media |
Total Pages | : 344 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461243726 |
In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does nr~ understand the simplest topological facts, such as the rcason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the l'isualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec tions to other parts of mathematics which make topology an important as well as a beautiful subject.
Author | : Chris Doran |
Publisher | : Cambridge University Press |
Total Pages | : 647 |
Release | : 2007-11-22 |
Genre | : Science |
ISBN | : 1139643142 |
Geometric algebra is a powerful mathematical language with applications across a range of subjects in physics and engineering. This book is a complete guide to the current state of the subject with early chapters providing a self-contained introduction to geometric algebra. Topics covered include new techniques for handling rotations in arbitrary dimensions, and the links between rotations, bivectors and the structure of the Lie groups. Following chapters extend the concept of a complex analytic function theory to arbitrary dimensions, with applications in quantum theory and electromagnetism. Later chapters cover advanced topics such as non-Euclidean geometry, quantum entanglement, and gauge theories. Applications such as black holes and cosmic strings are also explored. It can be used as a graduate text for courses on the physical applications of geometric algebra and is also suitable for researchers working in the fields of relativity and quantum theory.
Author | : Emil Artin |
Publisher | : Courier Dover Publications |
Total Pages | : 228 |
Release | : 2016-01-20 |
Genre | : Mathematics |
ISBN | : 048680920X |
This concise classic presents advanced undergraduates and graduate students in mathematics with an overview of geometric algebra. The text originated with lecture notes from a New York University course taught by Emil Artin, one of the preeminent mathematicians of the twentieth century. The Bulletin of the American Mathematical Society praised Geometric Algebra upon its initial publication, noting that "mathematicians will find on many pages ample evidence of the author's ability to penetrate a subject and to present material in a particularly elegant manner." Chapter 1 serves as reference, consisting of the proofs of certain isolated algebraic theorems. Subsequent chapters explore affine and projective geometry, symplectic and orthogonal geometry, the general linear group, and the structure of symplectic and orthogonal groups. The author offers suggestions for the use of this book, which concludes with a bibliography and index.
Author | : Igor V. Dolgachev |
Publisher | : Cambridge University Press |
Total Pages | : 653 |
Release | : 2012-08-16 |
Genre | : Mathematics |
ISBN | : 1139560786 |
Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.