Chaos Fractals And Dynamics
Download Chaos Fractals And Dynamics full books in PDF, epub, and Kindle. Read online free Chaos Fractals And Dynamics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Robert L. Devaney |
Publisher | : Addison Wesley Publishing Company |
Total Pages | : 212 |
Release | : 1990 |
Genre | : Mathematics |
ISBN | : |
Introduces the mathematical topics of chaos, fractals, and dynamics using a combination of hands-on computer experimentation and precalculas mathmetics. A series of experiments produce fascinating computer graphics images of Julia sets, the Mandelbrot set, and fractals. The basic ideas of dynamics--chaos, iteration, and stability--are illustrated via computer projects.
Author | : Marat Akhmet |
Publisher | : Springer Nature |
Total Pages | : 233 |
Release | : 2020-01-01 |
Genre | : Mathematics |
ISBN | : 3030358542 |
The book is concerned with the concepts of chaos and fractals, which are within the scopes of dynamical systems, geometry, measure theory, topology, and numerical analysis during the last several decades. It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. This is the first time in the literature that the description of chaos is initiated from a single motion. Chaos is now placed on the line of oscillations, and therefore, it is a subject of study in the framework of the theories of dynamical systems and differential equations, as in this book. The techniques introduced in the book make it possible to develop continuous and discrete dynamics which admit fractals as points of trajectories as well as orbits themselves. To provide strong arguments for the genericity of chaos in the real and abstract universe, the concept of abstract similarity is suggested.
Author | : Andrzej Lasota |
Publisher | : Springer Science & Business Media |
Total Pages | : 481 |
Release | : 2013-11-27 |
Genre | : Mathematics |
ISBN | : 146124286X |
The first edition of this book was originally published in 1985 under the ti tle "Probabilistic Properties of Deterministic Systems. " In the intervening years, interest in so-called "chaotic" systems has continued unabated but with a more thoughtful and sober eye toward applications, as befits a ma turing field. This interest in the serious usage of the concepts and techniques of nonlinear dynamics by applied scientists has probably been spurred more by the availability of inexpensive computers than by any other factor. Thus, computer experiments have been prominent, suggesting the wealth of phe nomena that may be resident in nonlinear systems. In particular, they allow one to observe the interdependence between the deterministic and probabilistic properties of these systems such as the existence of invariant measures and densities, statistical stability and periodicity, the influence of stochastic perturbations, the formation of attractors, and many others. The aim of the book, and especially of this second edition, is to present recent theoretical methods which allow one to study these effects. We have taken the opportunity in this second edition to not only correct the errors of the first edition, but also to add substantially new material in five sections and a new chapter.
Author | : Heinz-Otto Peitgen |
Publisher | : Springer Science & Business Media |
Total Pages | : 1013 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 1475747403 |
For almost ten years chaos and fractals have been enveloping many areas of mathematics and the natural sciences in their power, creativity and expanse. Reaching far beyond the traditional bounds of mathematics and science to the realms of popular culture, they have captured the attention and enthusiasm of a worldwide audience. The fourteen chapters of the book cover the central ideas and concepts, as well as many related topics including, the Mandelbrot Set, Julia Sets, Cellular Automata, L-Systems, Percolation and Strange Attractors, and each closes with the computer code for a central experiment. In the two appendices, Yuval Fisher discusses the details and ideas of fractal image compression, while Carl J.G. Evertsz and Benoit Mandelbrot introduce the foundations and implications of multifractals.
Author | : Michael F. Barnsley |
Publisher | : Academic Press |
Total Pages | : 305 |
Release | : 2014-05-10 |
Genre | : Mathematics |
ISBN | : 1483269086 |
Chaotic Dynamics and Fractals covers the proceedings of the 1985 Conference on Chaotic Dynamics, held at the Georgia Institute of Technology. This conference deals with the research area of chaos, dynamical systems, and fractal geometry. This text is organized into three parts encompassing 16 chapters. The first part describes the nature of chaos and fractals, the geometric tool for some strange attractors, and other complicated sets of data associated with chaotic systems. This part also considers the Henon-Hiles Hamiltonian with complex time, a Henon family of maps from C2 into itself, and the idea of turbulent maps in the course of presenting results on iteration of continuous maps from the unit interval to itself. The second part discusses complex analytic dynamics and associated fractal geometry, specifically the bursts into chaos, algorithms for obtaining geometrical and combinatorial information, and the parameter space for iterated cubic polynomials. This part also examines the differentiation of Julia sets with respects to a parameter in the associated rational map, permitting the formulation of Taylor series expansion for the sets. The third part highlights the applications of chaotic dynamics and fractals. This book will prove useful to mathematicians, physicists, and other scientists working in, or introducing themselves to, the field.
Author | : Manfred Schroeder |
Publisher | : Courier Corporation |
Total Pages | : 450 |
Release | : 2009-08-21 |
Genre | : Science |
ISBN | : 0486472043 |
This fascinating book explores the connections between chaos theory, physics, biology, and mathematics. Its award-winning computer graphics, optical illusions, and games illustrate the concept of self-similarity, a typical property of fractals. The author -- hailed by Publishers Weekly as a modern Lewis Carroll -- conveys memorable insights in the form of puns and puzzles. 1992 edition.
Author | : Francis C. Moon |
Publisher | : Wiley-VCH |
Total Pages | : 0 |
Release | : 2004-06-07 |
Genre | : Science |
ISBN | : 9780471679080 |
Translates new mathematical ideas in nonlinear dynamics and chaos into a language that engineers and scientists can understand, and gives specific examples and applications of chaotic dynamics in the physical world. Also describes how to perform both computer and physical experiments in chaotic dynamics. Topics cover Poincare maps, fractal dimensions and Lyapunov exponents, illustrating their use in specific physical examples. Includes an extensive guide to the literature, especially that relating to more mathematically oriented works; a glossary of chaotic dynamics terms; a list of computer experiments; and details for a demonstration experiment on chaotic vibrations.
Author | : Francis C. Moon |
Publisher | : John Wiley & Sons |
Total Pages | : 528 |
Release | : 2008-11-20 |
Genre | : Science |
ISBN | : 3527617515 |
A revision of a professional text on the phenomena of chaotic vibrations in fluids and solids. Major changes reflect the latest developments in this fast-moving topic, the introduction of problems to every chapter, additional mathematics and applications, more coverage of fractals, numerous computer and physical experiments. Contains eight pages of 4-color pictures.
Author | : David P. Feldman |
Publisher | : Oxford University Press, USA |
Total Pages | : 432 |
Release | : 2012-08-09 |
Genre | : Mathematics |
ISBN | : 0199566445 |
For students with a background in elementary algebra, this book provides a vivid introduction to the key phenomena and ideas of chaos and fractals, including the butterfly effect, strange attractors, fractal dimensions, Julia Sets and the Mandelbrot Set, power laws, and cellular automata. The book includes over 200 end-of-chapter exercises.
Author | : Kathleen Alligood |
Publisher | : Springer |
Total Pages | : 620 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642592813 |
BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.