Challenges and Opportunities for Deep Learning Applications in Industry 4.0

Challenges and Opportunities for Deep Learning Applications in Industry 4.0
Author: Vaishali Mehta
Publisher: Bentham Science Publishers
Total Pages: 229
Release: 2022-10-05
Genre: Computers
ISBN: 9815036076

The competence of deep learning for the automation and manufacturing sector has received astonishing attention in recent times. The manufacturing industry has recently experienced a revolutionary advancement despite several issues. One of the limitations for technical progress is the bottleneck encountered due to the enormous increase in data volume for processing, comprising various formats, semantics, qualities and features. Deep learning enables detection of meaningful features that are difficult to perform using traditional methods. The book takes the reader on a technological voyage of the industry 4.0 space. Chapters highlight recent applications of deep learning and the associated challenges and opportunities it presents for automating industrial processes and smart applications. Chapters introduce the reader to a broad range of topics in deep learning and machine learning. Several deep learning techniques used by industrial professionals are covered, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical project methodology. Readers will find information on the value of deep learning in applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. The book also discusses prospective research directions that focus on the theory and practical applications of deep learning in industrial automation. Therefore, the book aims to serve as a comprehensive reference guide for industrial consultants interested in industry 4.0, and as a handbook for beginners in data science and advanced computer science courses.

Machine Learning in Industry

Machine Learning in Industry
Author: Shubhabrata Datta
Publisher: Springer Nature
Total Pages: 202
Release: 2021-07-24
Genre: Technology & Engineering
ISBN: 3030758478

This book covers different machine learning techniques such as artificial neural network, support vector machine, rough set theory and deep learning. It points out the difference between the techniques and their suitability for specific applications. This book also describes different applications of machine learning techniques for industrial problems. The book includes several case studies, helping researchers in academia and industries aspiring to use machine learning for solving practical industrial problems.

Reinforcement Learning

Reinforcement Learning
Author: Phil Winder Ph.D.
Publisher: "O'Reilly Media, Inc."
Total Pages: 517
Release: 2020-11-06
Genre: Computers
ISBN: 1492072346

Reinforcement learning (RL) will deliver one of the biggest breakthroughs in AI over the next decade, enabling algorithms to learn from their environment to achieve arbitrary goals. This exciting development avoids constraints found in traditional machine learning (ML) algorithms. This practical book shows data science and AI professionals how to learn by reinforcement and enable a machine to learn by itself. Author Phil Winder of Winder Research covers everything from basic building blocks to state-of-the-art practices. You'll explore the current state of RL, focus on industrial applications, learn numerous algorithms, and benefit from dedicated chapters on deploying RL solutions to production. This is no cookbook; doesn't shy away from math and expects familiarity with ML. Learn what RL is and how the algorithms help solve problems Become grounded in RL fundamentals including Markov decision processes, dynamic programming, and temporal difference learning Dive deep into a range of value and policy gradient methods Apply advanced RL solutions such as meta learning, hierarchical learning, multi-agent, and imitation learning Understand cutting-edge deep RL algorithms including Rainbow, PPO, TD3, SAC, and more Get practical examples through the accompanying website

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare
Author: Adam Bohr
Publisher: Academic Press
Total Pages: 385
Release: 2020-06-21
Genre: Computers
ISBN: 0128184396

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Deep Learning Applications, Volume 2

Deep Learning Applications, Volume 2
Author: M. Arif Wani
Publisher: Springer
Total Pages: 300
Release: 2020-12-14
Genre: Technology & Engineering
ISBN: 9789811567582

This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.

Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance

Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance
Author: El Bachir Boukherouaa
Publisher: International Monetary Fund
Total Pages: 35
Release: 2021-10-22
Genre: Business & Economics
ISBN: 1589063953

This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.

Industry 4.0, AI, and Data Science

Industry 4.0, AI, and Data Science
Author: Vikram Bali
Publisher: CRC Press
Total Pages: 283
Release: 2021-07-20
Genre: Business & Economics
ISBN: 1000413454

The aim of this book is to provide insight into Data Science and Artificial Learning Techniques based on Industry 4.0, conveys how Machine Learning & Data Science are becoming an essential part of industrial and academic research. Varying from healthcare to social networking and everywhere hybrid models for Data Science, Al, and Machine Learning are being used. The book describes different theoretical and practical aspects and highlights how new systems are being developed. Along with focusing on the research trends, challenges and future of AI in Data Science, the book explores the potential for integration of advanced AI algorithms, addresses the challenges of Data Science for Industry 4.0, covers different security issues, includes qualitative and quantitative research, and offers case studies with working models. This book also provides an overview of AI and Data Science algorithms for readers who do not have a strong mathematical background. Undergraduates, postgraduates, academicians, researchers, and industry professionals will benefit from this book and use it as a guide.

Applications of Machine Learning

Applications of Machine Learning
Author: Prashant Johri
Publisher: Springer Nature
Total Pages: 404
Release: 2020-05-04
Genre: Technology & Engineering
ISBN: 9811533571

This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.

Industrial Applications of Machine Learning

Industrial Applications of Machine Learning
Author: Pedro LarraƱaga
Publisher: CRC Press
Total Pages: 349
Release: 2018-12-12
Genre: Business & Economics
ISBN: 135112837X

Industrial Applications of Machine Learning shows how machine learning can be applied to address real-world problems in the fourth industrial revolution, and provides the required knowledge and tools to empower readers to build their own solutions based on theory and practice. The book introduces the fourth industrial revolution and its current impact on organizations and society. It explores machine learning fundamentals, and includes four case studies that address a real-world problem in the manufacturing or logistics domains, and approaches machine learning solutions from an application-oriented point of view. The book should be of special interest to researchers interested in real-world industrial problems. Features Describes the opportunities, challenges, issues, and trends offered by the fourth industrial revolution Provides a user-friendly introduction to machine learning with examples of cutting-edge applications in different industrial sectors Includes four case studies addressing real-world industrial problems solved with machine learning techniques A dedicated website for the book contains the datasets of the case studies for the reader's reproduction, enabling the groundwork for future problem-solving Uses of three of the most widespread software and programming languages within the engineering and data science communities, namely R, Python, and Weka

Artificial Intelligence and Industry 4.0

Artificial Intelligence and Industry 4.0
Author: Aboul Ella Hassanien
Publisher: Academic Press
Total Pages: 264
Release: 2022-08-14
Genre: Technology & Engineering
ISBN: 0323906397

Artificial Intelligence and Industry 4.0 explores recent advancements in blockchain technology and artificial intelligence (AI) as well as their crucial impacts on realizing Industry 4.0 goals. The book explores AI applications in industry including Internet of Things (IoT) and Industrial Internet of Things (IIoT) technology. Chapters explore how AI (machine learning, smart cities, healthcare, Society 5.0, etc.) have numerous potential applications in the Industry 4.0 era. This book is a useful resource for researchers and graduate students in computer science researching and developing AI and the IIoT. - Explores artificial intelligence applications within the industrial manufacturing and communications sectors - Presents a wide range of machine learning, computer vision, and digital twin applications across the IoT sector - Explores how deep learning and cognitive computing tools enable processing vast data sets, precise and comprehensive forecast of risks, and delivering recommended actions