Category Theory For Programmers New Edition Hardcover
Download Category Theory For Programmers New Edition Hardcover full books in PDF, epub, and Kindle. Read online free Category Theory For Programmers New Edition Hardcover ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Bartosz Milewski |
Publisher | : |
Total Pages | : |
Release | : 2019-08-24 |
Genre | : |
ISBN | : 9780464243878 |
Category Theory is one of the most abstract branches of mathematics. It is usually taught to graduate students after they have mastered several other branches of mathematics, like algebra, topology, and group theory. It might, therefore, come as a shock that the basic concepts of category theory can be explained in relatively simple terms to anybody with some experience in programming.That's because, just like programming, category theory is about structure. Mathematicians discover structure in mathematical theories, programmers discover structure in computer programs. Well-structured programs are easier to understand and maintain and are less likely to contain bugs. Category theory provides the language to talk about structure and learning it will make you a better programmer.
Author | : Bartosz Milewski |
Publisher | : |
Total Pages | : |
Release | : 2019-08-12 |
Genre | : |
ISBN | : 9780464183648 |
This is the Scala edition of Category Theory for Programmers by Bartosz Milewski. This book contains code snippets in both Haskell and Scala.
Author | : Bartosz Milewski |
Publisher | : |
Total Pages | : |
Release | : 2018-10-21 |
Genre | : |
ISBN | : 9781518403507 |
Category Theory is one of the most abstract branches of mathematics. It is usually taught to graduate students after they have mastered several other branches of mathematics, like algebra, topology, and group theory. It might therefore come as a shock that the basic concepts of category theory can be explained in relatively simple terms to anybody with some experience in programming.That's because, just like programming, category theory is about structure. Mathematicians discover structure in mathematical theories, programmers discover structure in computer programs. Well structured programs are easier to understand and maintain, and are less likely to contain bugs. Category theory provides the language to talk about structure, and learning it will make you a better programmer.
Author | : Benjamin C. Pierce |
Publisher | : MIT Press |
Total Pages | : 117 |
Release | : 1991-08-07 |
Genre | : Computers |
ISBN | : 0262326450 |
Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Category theory is a branch of pure mathematics that is becoming an increasingly important tool in theoretical computer science, especially in programming language semantics, domain theory, and concurrency, where it is already a standard language of discourse. Assuming a minimum of mathematical preparation, Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Four case studies illustrate applications of category theory to programming language design, semantics, and the solution of recursive domain equations. A brief literature survey offers suggestions for further study in more advanced texts. Contents Tutorial • Applications • Further Reading
Author | : Brendan Fong |
Publisher | : Cambridge University Press |
Total Pages | : 351 |
Release | : 2019-07-18 |
Genre | : Mathematics |
ISBN | : 1108582249 |
Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.
Author | : Saunders Mac Lane |
Publisher | : Springer Science & Business Media |
Total Pages | : 320 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 1475747217 |
An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.
Author | : Emily Riehl |
Publisher | : Courier Dover Publications |
Total Pages | : 273 |
Release | : 2017-03-09 |
Genre | : Mathematics |
ISBN | : 0486820807 |
Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.
Author | : James M. Van Verth |
Publisher | : CRC Press |
Total Pages | : 706 |
Release | : 2008-05-19 |
Genre | : Art |
ISBN | : 0123742978 |
Essential Mathematics for Games and Interactive Applications, 2nd edition presents the core mathematics necessary for sophisticated 3D graphics and interactive physical simulations. The book begins with linear algebra and matrix multiplication and expands on this foundation to cover such topics as color and lighting, interpolation, animation and basic game physics. Essential Mathematics focuses on the issues of 3D game development important to programmers and includes optimization guidance throughout. The new edition Windows code will now use Visual Studio.NET. There will also be DirectX support provided, along with OpenGL - due to its cross-platform nature. Programmers will find more concrete examples included in this edition, as well as additional information on tuning, optimization and robustness. The book has a companion CD-ROM with exercises and a test bank for the academic secondary market, and for main market: code examples built around a shared code base, including a math library covering all the topics presented in the book, a core vector/matrix math engine, and libraries to support basic 3D rendering and interaction.
Author | : Steve Awodey |
Publisher | : Oxford University Press |
Total Pages | : 328 |
Release | : 2010-06-17 |
Genre | : Mathematics |
ISBN | : 0199587361 |
A comprehensive reference to category theory for students and researchers in mathematics, computer science, logic, cognitive science, linguistics, and philosophy. Useful for self-study and as a course text, the book includes all basic definitions and theorems (with full proofs), as well as numerous examples and exercises.
Author | : Marty Lewinter |
Publisher | : John Wiley & Sons |
Total Pages | : 240 |
Release | : 2015-06-02 |
Genre | : Mathematics |
ISBN | : 1119062764 |
A highly successful presentation of the fundamental concepts of number theory and computer programming Bridging an existing gap between mathematics and programming, Elementary Number Theory with Programming provides a unique introduction to elementary number theory with fundamental coverage of computer programming. Written by highly-qualified experts in the fields of computer science and mathematics, the book features accessible coverage for readers with various levels of experience and explores number theory in the context of programming without relying on advanced prerequisite knowledge and concepts in either area. Elementary Number Theory with Programming features comprehensive coverage of the methodology and applications of the most well-known theorems, problems, and concepts in number theory. Using standard mathematical applications within the programming field, the book presents modular arithmetic and prime decomposition, which are the basis of the public-private key system of cryptography. In addition, the book includes: Numerous examples, exercises, and research challenges in each chapter to encourage readers to work through the discussed concepts and ideas Select solutions to the chapter exercises in an appendix Plentiful sample computer programs to aid comprehension of the presented material for readers who have either never done any programming or need to improve their existing skill set A related website with links to select exercises An Instructor’s Solutions Manual available on a companion website Elementary Number Theory with Programming is a useful textbook for undergraduate and graduate-level students majoring in mathematics or computer science, as well as an excellent supplement for teachers and students who would like to better understand and appreciate number theory and computer programming. The book is also an ideal reference for computer scientists, programmers, and researchers interested in the mathematical applications of programming.