Cambridge Elementry Statistical Tables
Download Cambridge Elementry Statistical Tables full books in PDF, epub, and Kindle. Read online free Cambridge Elementry Statistical Tables ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : D. V. Lindley |
Publisher | : Cambridge University Press |
Total Pages | : 100 |
Release | : 1995-08-03 |
Genre | : Mathematics |
ISBN | : 9780521484855 |
This second edition has all the tables required for elementary statistical methods in the social, business and natural sciences.
Author | : Dennis Victor Lindley |
Publisher | : |
Total Pages | : 35 |
Release | : 1958 |
Genre | : Statistics |
ISBN | : |
Author | : David A. Freedman |
Publisher | : Cambridge University Press |
Total Pages | : 459 |
Release | : 2009-04-27 |
Genre | : Mathematics |
ISBN | : 1139477315 |
This lively and engaging book explains the things you have to know in order to read empirical papers in the social and health sciences, as well as the techniques you need to build statistical models of your own. The discussion in the book is organized around published studies, as are many of the exercises. Relevant journal articles are reprinted at the back of the book. Freedman makes a thorough appraisal of the statistical methods in these papers and in a variety of other examples. He illustrates the principles of modelling, and the pitfalls. The discussion shows you how to think about the critical issues - including the connection (or lack of it) between the statistical models and the real phenomena. The book is written for advanced undergraduates and beginning graduate students in statistics, as well as students and professionals in the social and health sciences.
Author | : David Stirzaker |
Publisher | : Cambridge University Press |
Total Pages | : 540 |
Release | : 2003-08-18 |
Genre | : Mathematics |
ISBN | : 1139441035 |
Now available in a fully revised and updated second edition, this well established textbook provides a straightforward introduction to the theory of probability. The presentation is entertaining without any sacrifice of rigour; important notions are covered with the clarity that the subject demands. Topics covered include conditional probability, independence, discrete and continuous random variables, basic combinatorics, generating functions and limit theorems, and an introduction to Markov chains. The text is accessible to undergraduate students and provides numerous worked examples and exercises to help build the important skills necessary for problem solving.
Author | : Stephen Kokoska |
Publisher | : CRC Press |
Total Pages | : 260 |
Release | : 2000-03-29 |
Genre | : Mathematics |
ISBN | : 9780849300264 |
Users of statistics in their professional lives and statistics students will welcome this concise, easy-to-use reference for basic statistics and probability. It contains all of the standardized statistical tables and formulas typically needed plus material on basic statistics topics, such as probability theory and distributions, regression, analysis of variance, nonparametric statistics, and statistical quality control. For each type of distribution the authors supply: ? definitions ? tables ? relationships with other distributions, including limiting forms ? statistical parameters, such as variance and generating functions ? a list of common problems involving the distribution Standard Probability and Statistics: Tables and Formulae also includes discussion of common statistical problems and supplies examples that show readers how to use the tables and formulae to get the solutions they need. With this handy reference, the focus can shift from rote learning and memorization to the concepts needed to use statistics efficiently and effectively.
Author | : J. L. Hodges, Jr. |
Publisher | : SIAM |
Total Pages | : 450 |
Release | : 2004-12-01 |
Genre | : Mathematics |
ISBN | : 089871575X |
This book provides a mathematically rigorous introduction to the fundamental ideas of modern statistics for readers without a calculus background.
Author | : Jacob Cohen |
Publisher | : Routledge |
Total Pages | : 625 |
Release | : 2013-05-13 |
Genre | : Psychology |
ISBN | : 1134742770 |
Statistical Power Analysis is a nontechnical guide to power analysis in research planning that provides users of applied statistics with the tools they need for more effective analysis. The Second Edition includes: * a chapter covering power analysis in set correlation and multivariate methods; * a chapter considering effect size, psychometric reliability, and the efficacy of "qualifying" dependent variables and; * expanded power and sample size tables for multiple regression/correlation.
Author | : David Pollard |
Publisher | : Cambridge University Press |
Total Pages | : 372 |
Release | : 2002 |
Genre | : Mathematics |
ISBN | : 9780521002899 |
This book grew from a one-semester course offered for many years to a mixed audience of graduate and undergraduate students who have not had the luxury of taking a course in measure theory. The core of the book covers the basic topics of independence, conditioning, martingales, convergence in distribution, and Fourier transforms. In addition there are numerous sections treating topics traditionally thought of as more advanced, such as coupling and the KMT strong approximation, option pricing via the equivalent martingale measure, and the isoperimetric inequality for Gaussian processes. The book is not just a presentation of mathematical theory, but is also a discussion of why that theory takes its current form. It will be a secure starting point for anyone who needs to invoke rigorous probabilistic arguments and understand what they mean.
Author | : William D. Dupont |
Publisher | : Cambridge University Press |
Total Pages | : 543 |
Release | : 2009-02-12 |
Genre | : Medical |
ISBN | : 0521849527 |
A second edition of the easy-to-use standard text guiding biomedical researchers in the use of advanced statistical methods.
Author | : Sanjeev Kulkarni |
Publisher | : John Wiley & Sons |
Total Pages | : 267 |
Release | : 2011-06-09 |
Genre | : Mathematics |
ISBN | : 1118023463 |
A thought-provoking look at statistical learning theory and its role in understanding human learning and inductive reasoning A joint endeavor from leading researchers in the fields of philosophy and electrical engineering, An Elementary Introduction to Statistical Learning Theory is a comprehensive and accessible primer on the rapidly evolving fields of statistical pattern recognition and statistical learning theory. Explaining these areas at a level and in a way that is not often found in other books on the topic, the authors present the basic theory behind contemporary machine learning and uniquely utilize its foundations as a framework for philosophical thinking about inductive inference. Promoting the fundamental goal of statistical learning, knowing what is achievable and what is not, this book demonstrates the value of a systematic methodology when used along with the needed techniques for evaluating the performance of a learning system. First, an introduction to machine learning is presented that includes brief discussions of applications such as image recognition, speech recognition, medical diagnostics, and statistical arbitrage. To enhance accessibility, two chapters on relevant aspects of probability theory are provided. Subsequent chapters feature coverage of topics such as the pattern recognition problem, optimal Bayes decision rule, the nearest neighbor rule, kernel rules, neural networks, support vector machines, and boosting. Appendices throughout the book explore the relationship between the discussed material and related topics from mathematics, philosophy, psychology, and statistics, drawing insightful connections between problems in these areas and statistical learning theory. All chapters conclude with a summary section, a set of practice questions, and a reference sections that supplies historical notes and additional resources for further study. An Elementary Introduction to Statistical Learning Theory is an excellent book for courses on statistical learning theory, pattern recognition, and machine learning at the upper-undergraduate and graduate levels. It also serves as an introductory reference for researchers and practitioners in the fields of engineering, computer science, philosophy, and cognitive science that would like to further their knowledge of the topic.