Calculus And Linear Algebra Vector Spaces Many Variable Calculus And Differential Equations
Download Calculus And Linear Algebra Vector Spaces Many Variable Calculus And Differential Equations full books in PDF, epub, and Kindle. Read online free Calculus And Linear Algebra Vector Spaces Many Variable Calculus And Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Stanley I. Grossman |
Publisher | : Academic Press |
Total Pages | : 993 |
Release | : 2014-05-10 |
Genre | : Mathematics |
ISBN | : 1483218031 |
Multivariable Calculus, Linear Algebra, and Differential Equations, Second Edition contains a comprehensive coverage of the study of advanced calculus, linear algebra, and differential equations for sophomore college students. The text includes a large number of examples, exercises, cases, and applications for students to learn calculus well. Also included is the history and development of calculus. The book is divided into five parts. The first part includes multivariable calculus material. The second part is an introduction to linear algebra. The third part of the book combines techniques from calculus and linear algebra and contains discussions of some of the most elegant results in calculus including Taylor's theorem in "n" variables, the multivariable mean value theorem, and the implicit function theorem. The fourth section contains detailed discussions of first-order and linear second-order equations. Also included are optional discussions of electric circuits and vibratory motion. The final section discusses Taylor's theorem, sequences, and series. The book is intended for sophomore college students of advanced calculus.
Author | : Wilfred Kaplan |
Publisher | : |
Total Pages | : 628 |
Release | : 1970 |
Genre | : Algebras, Linear |
ISBN | : |
Author | : John Hamal Hubbard |
Publisher | : |
Total Pages | : 284 |
Release | : 2009 |
Genre | : Algebras, Linear |
ISBN | : 9780971576674 |
Author | : Lynn Harold Loomis |
Publisher | : World Scientific Publishing Company |
Total Pages | : 595 |
Release | : 2014-02-26 |
Genre | : Mathematics |
ISBN | : 9814583952 |
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Author | : C. H. Edwards |
Publisher | : Academic Press |
Total Pages | : 470 |
Release | : 2014-05-10 |
Genre | : Mathematics |
ISBN | : 1483268055 |
Advanced Calculus of Several Variables provides a conceptual treatment of multivariable calculus. This book emphasizes the interplay of geometry, analysis through linear algebra, and approximation of nonlinear mappings by linear ones. The classical applications and computational methods that are responsible for much of the interest and importance of calculus are also considered. This text is organized into six chapters. Chapter I deals with linear algebra and geometry of Euclidean n-space Rn. The multivariable differential calculus is treated in Chapters II and III, while multivariable integral calculus is covered in Chapters IV and V. The last chapter is devoted to venerable problems of the calculus of variations. This publication is intended for students who have completed a standard introductory calculus sequence.
Author | : John W. Dettman |
Publisher | : Courier Corporation |
Total Pages | : 442 |
Release | : 2012-10-05 |
Genre | : Mathematics |
ISBN | : 0486158314 |
Excellent introductory text focuses on complex numbers, determinants, orthonormal bases, symmetric and hermitian matrices, first order non-linear equations, linear differential equations, Laplace transforms, Bessel functions, more. Includes 48 black-and-white illustrations. Exercises with solutions. Index.
Author | : Oliver Knill |
Publisher | : World Scientific Publishing Company |
Total Pages | : 0 |
Release | : 2025-04-30 |
Genre | : Mathematics |
ISBN | : 9789811218118 |
This book covers vector calculus up to the integral theorems; linear algebra up to the spectral theorem; and harmonic analysis until the Dirichlet theorem on convergence of Fourier series with applications to partial differential equations. It also contains a unique introduction to proofs, while providing a solid foundation in understanding the proof techniques better.The book incorporates fundamentals from advanced calculus and linear algebra but it is still accessible to a rather general student audience.Students will find materials that are usually left out like differential forms in calculus, the Taylor theorem in arbitrary dimensions or the Jordan normal form in linear algebra, the convergence proof of Fourier series, and how to do calculus on discrete networks.The contents of this book were used to teach in a two-semester course at Harvard University during fall 2018 and spring 2019. For the last 30 years, Oliver Knill has taught calculus, linear algebra, probability theory and differential equations starting at ETH Zürich, moving onward to Caltech, and the University of Arizona, and ever since 2000, at Harvard.
Author | : Serge Lang |
Publisher | : Springer Science & Business Media |
Total Pages | : 624 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461210682 |
This new, revised edition covers all of the basic topics in calculus of several variables, including vectors, curves, functions of several variables, gradient, tangent plane, maxima and minima, potential functions, curve integrals, Green’s theorem, multiple integrals, surface integrals, Stokes’ theorem, and the inverse mapping theorem and its consequences. It includes many completely worked-out problems.
Author | : Michael E. Taylor |
Publisher | : American Mathematical Soc. |
Total Pages | : 462 |
Release | : 2020-07-27 |
Genre | : Education |
ISBN | : 1470456699 |
This text was produced for the second part of a two-part sequence on advanced calculus, whose aim is to provide a firm logical foundation for analysis. The first part treats analysis in one variable, and the text at hand treats analysis in several variables. After a review of topics from one-variable analysis and linear algebra, the text treats in succession multivariable differential calculus, including systems of differential equations, and multivariable integral calculus. It builds on this to develop calculus on surfaces in Euclidean space and also on manifolds. It introduces differential forms and establishes a general Stokes formula. It describes various applications of Stokes formula, from harmonic functions to degree theory. The text then studies the differential geometry of surfaces, including geodesics and curvature, and makes contact with degree theory, via the Gauss–Bonnet theorem. The text also takes up Fourier analysis, and bridges this with results on surfaces, via Fourier analysis on spheres and on compact matrix groups.
Author | : Theodore Shifrin |
Publisher | : John Wiley & Sons |
Total Pages | : 514 |
Release | : 2004-01-26 |
Genre | : Mathematics |
ISBN | : 047152638X |
Multivariable Mathematics combines linear algebra and multivariable mathematics in a rigorous approach. The material is integrated to emphasize the recurring theme of implicit versus explicit that persists in linear algebra and analysis. In the text, the author includes all of the standard computational material found in the usual linear algebra and multivariable calculus courses, and more, interweaving the material as effectively as possible, and also includes complete proofs. * Contains plenty of examples, clear proofs, and significant motivation for the crucial concepts. * Numerous exercises of varying levels of difficulty, both computational and more proof-oriented. * Exercises are arranged in order of increasing difficulty.