Modular Forms and Related Topics in Number Theory

Modular Forms and Related Topics in Number Theory
Author: B. Ramakrishnan
Publisher: Springer Nature
Total Pages: 240
Release: 2020-11-24
Genre: Mathematics
ISBN: 9811587191

This book collects the papers presented at the Conference on Number Theory, held at the Kerala School of Mathematics, Kozhikode, Kerala, India, from December 10–14, 2018. The conference aimed at bringing the active number theorists and researchers in automorphic forms and allied areas to demonstrate their current research works. This book benefits young research scholars, postdoctoral fellows, and young faculty members working in these areas of research.

Topics from the Theory of Numbers

Topics from the Theory of Numbers
Author: Emil Grosswald
Publisher: Springer Science & Business Media
Total Pages: 336
Release: 2010-02-23
Genre: Mathematics
ISBN: 0817648380

Many of the important and creative developments in modern mathematics resulted from attempts to solve questions that originate in number theory. The publication of Emil Grosswald’s classic text presents an illuminating introduction to number theory. Combining the historical developments with the analytical approach, Topics from the Theory of Numbers offers the reader a diverse range of subjects to investigate.

Topics in Analytic Number Theory

Topics in Analytic Number Theory
Author: Hans Rademacher
Publisher: Springer Science & Business Media
Total Pages: 333
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642806155

At the time of Professor Rademacher's death early in 1969, there was available a complete manuscript of the present work. The editors had only to supply a few bibliographical references and to correct a few misprints and errors. No substantive changes were made in the manu script except in one or two places where references to additional material appeared; since this material was not found in Rademacher's papers, these references were deleted. The editors are grateful to Springer-Verlag for their helpfulness and courtesy. Rademacher started work on the present volume no later than 1944; he was still working on it at the inception of his final illness. It represents the parts of analytic number theory that were of greatest interest to him. The editors, his students, offer this work as homage to the memory of a great man to whom they, in common with all number theorists, owe a deep and lasting debt. E. Grosswald Temple University, Philadelphia, PA 19122, U.S.A. J. Lehner University of Pittsburgh, Pittsburgh, PA 15213 and National Bureau of Standards, Washington, DC 20234, U.S.A. M. Newman National Bureau of Standards, Washington, DC 20234, U.S.A. Contents I. Analytic tools Chapter 1. Bernoulli polynomials and Bernoulli numbers ....... . 1 1. The binomial coefficients ..................................... . 1 2. The Bernoulli polynomials .................................... . 4 3. Zeros of the Bernoulli polynomials ............................. . 7 4. The Bernoulli numbers ....................................... . 9 5. The von Staudt-Clausen theorem .............................. . 10 6. A multiplication formula for the Bernoulli polynomials ........... .

Number Theory and Related Fields

Number Theory and Related Fields
Author: Jonathan M. Borwein
Publisher: Springer Science & Business Media
Total Pages: 395
Release: 2013-05-16
Genre: Mathematics
ISBN: 1461466423

“Number Theory and Related Fields” collects contributions based on the proceedings of the "International Number Theory Conference in Memory of Alf van der Poorten," hosted by CARMA and held March 12-16th 2012 at the University of Newcastle, Australia. The purpose of the conference was to promote number theory research in Australia while commemorating the legacy of Alf van der Poorten, who had written over 170 papers on the topic of number theory and collaborated with dozens of researchers. The research articles and surveys presented in this book were written by some of the most distinguished mathematicians in the field of number theory, and articles will include related topics that focus on the various research interests of Dr. van der Poorten.​

Number Theory

Number Theory
Author: Titu Andreescu
Publisher:
Total Pages: 686
Release: 2017-07-15
Genre: Number theory
ISBN: 9780988562202

Challenge your problem-solving aptitude in number theory with powerful problems that have concrete examples which reflect the potential and impact of theoretical results. Each chapter focuses on a fundamental concept or result, reinforced by each of the subsections, with scores of challenging problems that allow you to comprehend number theory like never before. All students and coaches wishing to excel in math competitions will benefit from this book as will mathematicians and adults who enjoy interesting mathematics.

Analytic Number Theory And Related Topics - Proceedings Of The Conference

Analytic Number Theory And Related Topics - Proceedings Of The Conference
Author: Kenji Nagasaka
Publisher: World Scientific
Total Pages: 158
Release: 1993-08-26
Genre:
ISBN: 9814552666

The proceedings consists of invited papers by distinguished mathematicians reviewing the recent progress in analytic number theory and related topics. Papers on Diophantine approximations, zeta functions, Dirichlet L-functions, normal numbers, dispersion of multi-dimensional sequences, Diophantine equations, etc., are also presented.

Advanced Topics in Computational Number Theory

Advanced Topics in Computational Number Theory
Author: Henri Cohen
Publisher: Springer Science & Business Media
Total Pages: 591
Release: 2012-10-29
Genre: Mathematics
ISBN: 1441984895

Written by an authority with great practical and teaching experience in the field, this book addresses a number of topics in computational number theory. Chapters one through five form a homogenous subject matter suitable for a six-month or year-long course in computational number theory. The subsequent chapters deal with more miscellaneous subjects.

Number Theory

Number Theory
Author: W.A. Coppel
Publisher: Springer Science & Business Media
Total Pages: 392
Release: 2006-02-02
Genre: Mathematics
ISBN: 9780387298511

This two-volume book is a modern introduction to the theory of numbers, emphasizing its connections with other branches of mathematics. Part A is accessible to first-year undergraduates and deals with elementary number theory. Part B is more advanced and gives the reader an idea of the scope of mathematics today. The connecting theme is the theory of numbers. By exploring its many connections with other branches a broad picture is obtained. The book contains a treasury of proofs, several of which are gems seldom seen in number theory books.

Recurrence Sequences

Recurrence Sequences
Author: Graham Everest
Publisher: American Mathematical Soc.
Total Pages: 338
Release: 2015-09-03
Genre: Mathematics
ISBN: 1470423154

Recurrence sequences are of great intrinsic interest and have been a central part of number theory for many years. Moreover, these sequences appear almost everywhere in mathematics and computer science. This book surveys the modern theory of linear recurrence sequences and their generalizations. Particular emphasis is placed on the dramatic impact that sophisticated methods from Diophantine analysis and transcendence theory have had on the subject. Related work on bilinear recurrences and an emerging connection between recurrences and graph theory are covered. Applications and links to other areas of mathematics are described, including combinatorics, dynamical systems and cryptography, and computer science. The book is suitable for researchers interested in number theory, combinatorics, and graph theory.