Building Trading Bots Using Java

Building Trading Bots Using Java
Author: Shekhar Varshney
Publisher: Apress
Total Pages: 283
Release: 2016-12-07
Genre: Computers
ISBN: 1484225201

Build an automated currency trading bot from scratch with java. In this book, you will learn about the nitty-gritty of automated trading and have a closer look at Java, the Spring Framework, event-driven programming, and other open source APIs, notably Google's Guava API. And of course, development will all be test-driven with unit testing coverage. The central theme of Building Trading Bots Using Java is to create a framework that can facilitate automated trading on most of the brokerage platforms, with minimum changes. At the end of the journey, you will have a working trading bot, with a sample implementation using the OANDA REST API, which is free to use. What You'll Learn Find out about trading bots Discover the details of tradeable instruments and apply bots to them Track and use market data events Place orders and trades Work with trade/order and account events Who This Book Is For Experienced programmers new to bots and other algorithmic trading and finance techniques.

Game Hacking

Game Hacking
Author: Nick Cano
Publisher: No Starch Press
Total Pages: 305
Release: 2016-07-01
Genre: Computers
ISBN: 1593276699

You don’t need to be a wizard to transform a game you like into a game you love. Imagine if you could give your favorite PC game a more informative heads-up display or instantly collect all that loot from your latest epic battle. Bring your knowledge of Windows-based development and memory management, and Game Hacking will teach you what you need to become a true game hacker. Learn the basics, like reverse engineering, assembly code analysis, programmatic memory manipulation, and code injection, and hone your new skills with hands-on example code and practice binaries. Level up as you learn how to: –Scan and modify memory with Cheat Engine –Explore program structure and execution flow with OllyDbg –Log processes and pinpoint useful data files with Process Monitor –Manipulate control flow through NOPing, hooking, and more –Locate and dissect common game memory structures You’ll even discover the secrets behind common game bots, including: –Extrasensory perception hacks, such as wallhacks and heads-up displays –Responsive hacks, such as autohealers and combo bots –Bots with artificial intelligence, such as cave walkers and automatic looters Game hacking might seem like black magic, but it doesn’t have to be. Once you understand how bots are made, you’ll be better positioned to defend against them in your own games. Journey through the inner workings of PC games with Game Hacking, and leave with a deeper understanding of both game design and computer security.

Machine Learning for Algorithmic Trading

Machine Learning for Algorithmic Trading
Author: Stefan Jansen
Publisher: Packt Publishing Ltd
Total Pages: 822
Release: 2020-07-31
Genre: Business & Economics
ISBN: 1839216786

Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.

Supercharge Your Applications with GraalVM

Supercharge Your Applications with GraalVM
Author: A B Vijay Kumar
Publisher: Packt Publishing Ltd
Total Pages: 360
Release: 2021-08-10
Genre: Computers
ISBN: 1800566239

Understand the internals and architecture of GraalVM with the help of hands-on experiments and gain deep knowledge that you can apply to improve your application's performance, interoperability, and throughput. Key FeaturesGenerate faster and leaner code with minimum computing resources for high performanceCompile Java applications faster than ever to a standalone executable called native imagesCreate high-performance polyglot applications that are compatible across various JVM and non-JVM languagesBook Description GraalVM is a universal virtual machine that allows programmers to compile and run applications written in both JVM and non-JVM languages. It improves the performance and efficiency of applications, making it an ideal companion for cloud-native or microservices-based applications. This book is a hands-on guide, with step-by-step instructions on how to work with GraalVM. Starting with a quick introduction to the GraalVM architecture and how things work under the hood, you'll discover the performance benefits of running your Java applications on GraalVM. You'll then learn how to create native images and understand how AOT (ahead-of-time) can improve application performance significantly. The book covers examples of building polyglot applications that will help you explore the interoperability between languages running on the same VM. You'll also see how you can use the Truffle framework to implement any language of your choice to run optimally on GraalVM. By the end of this book, you'll not only have learned how GraalVM is beneficial in cloud-native and microservices development but also how to leverage its capabilities to create high-performing polyglot applications. What you will learnGain a solid understanding of GraalVM and how it works under the hoodWork with GraalVM's high performance optimizing compiler and see how it can be used in both JIT (just-in-time) and AOT (ahead-of-time) modesGet to grips with the various optimizations that GraalVM performs at runtimeUse advanced tools to analyze and diagnose performance issues in the codeCompile, embed, run, and interoperate between languages using Truffle on GraalVMBuild optimum microservices using popular frameworks such as Micronaut and Quarkus to create cloud-native applicationsWho this book is for This book is for JVM developers looking to optimize their application's performance. You'll also find this book useful if you're a JVM developer looking to explore options to develop polyglot applications using tools from the Python, R, Ruby, or Node.js ecosystem. A solid understanding of software development concepts and prior experience working with programming languages is necessary to get started.

Learn Algorithmic Trading

Learn Algorithmic Trading
Author: Sourav Ghosh
Publisher:
Total Pages: 394
Release: 2019-11-07
Genre: Computers
ISBN: 9781789348347

Understand the fundamentals of algorithmic trading to apply algorithms to real market data and analyze the results of real-world trading strategies Key Features Understand the power of algorithmic trading in financial markets with real-world examples Get up and running with the algorithms used to carry out algorithmic trading Learn to build your own algorithmic trading robots which require no human intervention Book Description It's now harder than ever to get a significant edge over competitors in terms of speed and efficiency when it comes to algorithmic trading. Relying on sophisticated trading signals, predictive models and strategies can make all the difference. This book will guide you through these aspects, giving you insights into how modern electronic trading markets and participants operate. You'll start with an introduction to algorithmic trading, along with setting up the environment required to perform the tasks in the book. You'll explore the key components of an algorithmic trading business and aspects you'll need to take into account before starting an automated trading project. Next, you'll focus on designing, building and operating the components required for developing a practical and profitable algorithmic trading business. Later, you'll learn how quantitative trading signals and strategies are developed, and also implement and analyze sophisticated trading strategies such as volatility strategies, economic release strategies, and statistical arbitrage. Finally, you'll create a trading bot from scratch using the algorithms built in the previous sections. By the end of this book, you'll be well-versed with electronic trading markets and have learned to implement, evaluate and safely operate algorithmic trading strategies in live markets. What you will learn Understand the components of modern algorithmic trading systems and strategies Apply machine learning in algorithmic trading signals and strategies using Python Build, visualize and analyze trading strategies based on mean reversion, trend, economic releases and more Quantify and build a risk management system for Python trading strategies Build a backtester to run simulated trading strategies for improving the performance of your trading bot Deploy and incorporate trading strategies in the live market to maintain and improve profitability Who this book is for This book is for software engineers, financial traders, data analysts, and entrepreneurs. Anyone who wants to get started with algorithmic trading and understand how it works; and learn the components of a trading system, protocols and algorithms required for black box and gray box trading, and techniques for building a completely automated and profitable trading business will also find this book useful.

Python Machine Learning Projects

Python Machine Learning Projects
Author: Lisa Tagliaferri
Publisher: DigitalOcean
Total Pages: 152
Release: 2019-05-02
Genre: Computers
ISBN: 099977302X

As machine learning is increasingly leveraged to find patterns, conduct analysis, and make decisions — sometimes without final input from humans who may be impacted by these findings — it is crucial to invest in bringing more stakeholders into the fold. This book of Python projects in machine learning tries to do just that: to equip the developers of today and tomorrow with tools they can use to better understand, evaluate, and shape machine learning to help ensure that it is serving us all. This book will set you up with a Python programming environment if you don’t have one already, then provide you with a conceptual understanding of machine learning in the chapter “An Introduction to Machine Learning.” What follows next are three Python machine learning projects. They will help you create a machine learning classifier, build a neural network to recognize handwritten digits, and give you a background in deep reinforcement learning through building a bot for Atari.

The OPEN Process Framework

The OPEN Process Framework
Author: Donald G. Firesmith
Publisher: Pearson Education
Total Pages: 366
Release: 2002
Genre: Computers
ISBN: 9780201675108

"[The authors] have done an excellent job of bringing forth the power and the flexibility of this most useful framework in an easy to read and understand introduction. Although it has been written to be an introductory text in OPF, I found [it] also readily useable as a handbook for initial process definition, an accessible treatment of important issues in software process design, and a textbook in OPF." Houman Younessi Associate Professor of Computer Science, Rensselaer Polytechnic Institute The OPEN Process Framework provides a template for generating flexible, yet disciplined, processes for developing high-quality software and system applications within a predictable schedule and budget. Using this framework as a starting point, you can create and tailor a process to meet the specific needs of the project.

Algorithmic and High-Frequency Trading

Algorithmic and High-Frequency Trading
Author: Álvaro Cartea
Publisher: Cambridge University Press
Total Pages: 360
Release: 2015-08-06
Genre: Mathematics
ISBN: 1316453650

The design of trading algorithms requires sophisticated mathematical models backed up by reliable data. In this textbook, the authors develop models for algorithmic trading in contexts such as executing large orders, market making, targeting VWAP and other schedules, trading pairs or collection of assets, and executing in dark pools. These models are grounded on how the exchanges work, whether the algorithm is trading with better informed traders (adverse selection), and the type of information available to market participants at both ultra-high and low frequency. Algorithmic and High-Frequency Trading is the first book that combines sophisticated mathematical modelling, empirical facts and financial economics, taking the reader from basic ideas to cutting-edge research and practice. If you need to understand how modern electronic markets operate, what information provides a trading edge, and how other market participants may affect the profitability of the algorithms, then this is the book for you.

Trading Evolved

Trading Evolved
Author: Andreas F. Clenow
Publisher:
Total Pages: 442
Release: 2019-08-07
Genre:
ISBN: 9781091983786

Systematic trading allows you to test and evaluate your trading ideas before risking your money. By formulating trading ideas as concrete rules, you can evaluate past performance and draw conclusions about the viability of your trading plan. Following systematic rules provides a consistent approach where you will have some degree of predictability of returns, and perhaps more importantly, it takes emotions and second guessing out of the equation. From the onset, getting started with professional grade development and backtesting of systematic strategies can seem daunting. Many resort to simplified software which will limit your potential. Trading Evolved will guide you all the way, from getting started with the industry standard Python language, to setting up a professional backtesting environment of your own. The book will explain multiple trading strategies in detail, with full source code, to get you well on the path to becoming a professional systematic trader. This is a highly practical book, where every aspect is explained, all source code shown and no holds barred. Written by Andreas F. Clenow, author of the international best sellers Following the Trend and Stocks on the Move, Trading Evolved goes into greater depth and covers strategies for trading both futures and equities. "Trading Evolved is an incredible resource for aspiring quants. Clenow does an excellent job making complex subjects easy to access and understand. Bravo." -- Wes Gray, PhD, CEO Alpha Architect

Algorithmic Trading with Python

Algorithmic Trading with Python
Author: Chris Conlan
Publisher: Independently Published
Total Pages: 126
Release: 2020-04-09
Genre:
ISBN:

Algorithmic Trading with Python discusses modern quant trading methods in Python with a heavy focus on pandas, numpy, and scikit-learn. After establishing an understanding of technical indicators and performance metrics, readers will walk through the process of developing a trading simulator, strategy optimizer, and financial machine learning pipeline. This book maintains a high standard of reprocibility. All code and data is self-contained in a GitHub repo. The data includes hyper-realistic simulated price data and alternative data based on real securities. Algorithmic Trading with Python (2020) is the spiritual successor to Automated Trading with R (2016). This book covers more content in less time than its predecessor due to advances in open-source technologies for quantitative analysis.