Non-homogeneous Random Walks

Non-homogeneous Random Walks
Author: Mikhail Menshikov
Publisher: Cambridge University Press
Total Pages: 385
Release: 2016-12-22
Genre: Mathematics
ISBN: 1316867366

Stochastic systems provide powerful abstract models for a variety of important real-life applications: for example, power supply, traffic flow, data transmission. They (and the real systems they model) are often subject to phase transitions, behaving in one way when a parameter is below a certain critical value, then switching behaviour as soon as that critical value is reached. In a real system, we do not necessarily have control over all the parameter values, so it is important to know how to find critical points and to understand system behaviour near these points. This book is a modern presentation of the 'semimartingale' or 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks. Applications treat near-critical stochastic systems and range across modern probability theory from stochastic billiards models to interacting particle systems. Spatially non-homogeneous random walks are explored in depth, as they provide prototypical near-critical systems.

Branching Random Walks

Branching Random Walks
Author: Zhan Shi
Publisher: Springer
Total Pages: 143
Release: 2016-02-04
Genre: Mathematics
ISBN: 3319253727

Providing an elementary introduction to branching random walks, the main focus of these lecture notes is on the asymptotic properties of one-dimensional discrete-time supercritical branching random walks, and in particular, on extreme positions in each generation, as well as the evolution of these positions over time. Starting with the simple case of Galton-Watson trees, the text primarily concentrates on exploiting, in various contexts, the spinal structure of branching random walks. The notes end with some applications to biased random walks on trees.

Discrete Time Branching Processes in Random Environment

Discrete Time Branching Processes in Random Environment
Author: Götz Kersting
Publisher: John Wiley & Sons
Total Pages: 311
Release: 2017-10-30
Genre: Mathematics
ISBN: 1119473551

Branching processes are stochastic processes which represent the reproduction of particles, such as individuals within a population, and thereby model demographic stochasticity. In branching processes in random environment (BPREs), additional environmental stochasticity is incorporated, meaning that the conditions of reproduction may vary in a random fashion from one generation to the next. This book offers an introduction to the basics of BPREs and then presents the cases of critical and subcritical processes in detail, the latter dividing into weakly, intermediate, and strongly subcritical regimes.

Branching Processes and Their Applications

Branching Processes and Their Applications
Author: Inés M. del Puerto
Publisher: Springer
Total Pages: 331
Release: 2016-09-06
Genre: Mathematics
ISBN: 3319316419

This volume gathers papers originally presented at the 3rd Workshop on Branching Processes and their Applications (WBPA15), which was held from 7 to 10 April 2015 in Badajoz, Spain (http://branching.unex.es/wbpa15/index.htm). The papers address a broad range of theoretical and practical aspects of branching process theory. Further, they amply demonstrate that the theoretical research in this area remains vital and topical, as well as the relevance of branching concepts in the development of theoretical approaches to solving new problems in applied fields such as Epidemiology, Biology, Genetics, and, of course, Population Dynamics. The topics covered can broadly be classified into the following areas: 1. Coalescent Branching Processes 2. Branching Random Walks 3. Population Growth Models in Varying and Random Environments 4. Size/Density/Resource-Dependent Branching Models 5. Age-Dependent Branching Models 6. Special Branching Models 7. Applications in Epidemiology 8. Applications in Biology and Genetics Offering a valuable reference guide to contemporary branching process theory, the book also explores many open problems, paving the way for future research.

Recent Developments in Stochastic Methods and Applications

Recent Developments in Stochastic Methods and Applications
Author: Albert N. Shiryaev
Publisher: Springer Nature
Total Pages: 370
Release: 2021-08-02
Genre: Mathematics
ISBN: 303083266X

Highlighting the latest advances in stochastic analysis and its applications, this volume collects carefully selected and peer-reviewed papers from the 5th International Conference on Stochastic Methods (ICSM-5), held in Moscow, Russia, November 23-27, 2020. The contributions deal with diverse topics such as stochastic analysis, stochastic methods in computer science, analytical modeling, asymptotic methods and limit theorems, Markov processes, martingales, insurance and financial mathematics, queueing theory and stochastic networks, reliability theory, risk analysis, statistical methods and applications, machine learning and data analysis. The 29 articles in this volume are a representative sample of the 87 high-quality papers accepted and presented during the conference. The aim of the ICSM-5 conference is to promote the collaboration of researchers from Russia and all over the world, and to contribute to the development of the field of stochastic analysis and applications of stochastic models.

Random Walks, Random Fields, and Disordered Systems

Random Walks, Random Fields, and Disordered Systems
Author: Anton Bovier
Publisher: Springer
Total Pages: 254
Release: 2015-09-21
Genre: Science
ISBN: 3319193392

Focusing on the mathematics that lies at the intersection of probability theory, statistical physics, combinatorics and computer science, this volume collects together lecture notes on recent developments in the area. The common ground of these subjects is perhaps best described by the three terms in the title: Random Walks, Random Fields and Disordered Systems. The specific topics covered include a study of Branching Brownian Motion from the perspective of disordered (spin-glass) systems, a detailed analysis of weakly self-avoiding random walks in four spatial dimensions via methods of field theory and the renormalization group, a study of phase transitions in disordered discrete structures using a rigorous version of the cavity method, a survey of recent work on interacting polymers in the ballisticity regime and, finally, a treatise on two-dimensional loop-soup models and their connection to conformally invariant systems and the Gaussian Free Field. The notes are aimed at early graduate students with a modest background in probability and mathematical physics, although they could also be enjoyed by seasoned researchers interested in learning about recent advances in the above fields.

Directed Polymers in Random Environments

Directed Polymers in Random Environments
Author: Francis Comets
Publisher: Springer
Total Pages: 210
Release: 2017-01-26
Genre: Mathematics
ISBN: 3319504878

Analyzing the phase transition from diffusive to localized behavior in a model of directed polymers in a random environment, this volume places particular emphasis on the localization phenomenon. The main questionis: What does the path of a random walk look like if rewards and penalties are spatially randomly distributed?This model, which provides a simplified version of stretched elastic chains pinned by random impurities, has attracted much research activity, but it (and its relatives) still holds many secrets, especially in high dimensions. It has non-gaussian scaling limits and it belongs to the so-called KPZ universality class when the space is one-dimensional. Adopting a Gibbsian approach, using general and powerful tools from probability theory, the discrete model is studied in full generality. Presenting the state-of-the art from different perspectives, and written in the form of a first course on the subject, this monograph is aimed at researchers in probability or statistical physics, but is also accessible to masters and Ph.D. students.

Random Graph Dynamics

Random Graph Dynamics
Author: Rick Durrett
Publisher: Cambridge University Press
Total Pages: 203
Release: 2010-05-31
Genre: Mathematics
ISBN: 1139460889

The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter.

Random Walks

Random Walks
Author: Pál Révész
Publisher: Janos Bolyai Mathematical Society
Total Pages: 396
Release: 1999
Genre: Mathematics
ISBN:

Random Walk, Brownian Motion, and Martingales

Random Walk, Brownian Motion, and Martingales
Author: Rabi Bhattacharya
Publisher: Springer Nature
Total Pages: 396
Release: 2021-09-20
Genre: Mathematics
ISBN: 303078939X

This textbook offers an approachable introduction to stochastic processes that explores the four pillars of random walk, branching processes, Brownian motion, and martingales. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study. Consisting of many short chapters, the book begins with a comprehensive account of the simple random walk in one dimension. From here, different paths may be chosen according to interest. Themes span Poisson processes, branching processes, the Kolmogorov–Chentsov theorem, martingales, renewal theory, and Brownian motion. Special topics follow, showcasing a selection of important contemporary applications, including mathematical finance, optimal stopping, ruin theory, branching random walk, and equations of fluids. Engaging exercises accompany the theory throughout. Random Walk, Brownian Motion, and Martingales is an ideal introduction to the rigorous study of stochastic processes. Students and instructors alike will appreciate the accessible, example-driven approach. A single, graduate-level course in probability is assumed.