Braid Group, Knot Theory, and Statistical Mechanics II

Braid Group, Knot Theory, and Statistical Mechanics II
Author: Chen Ning Yang
Publisher: World Scientific
Total Pages: 496
Release: 1994
Genre: Science
ISBN: 9789810215248

The present volume is an updated version of the book edited by C N Yang and M L Ge on the topics of braid groups and knot theory, which are related to statistical mechanics. This book is based on the 1989 volume but has new material included and new contributors.

Braid Group, Knot Theory And Statistical Mechanics

Braid Group, Knot Theory And Statistical Mechanics
Author: Mo-lin Ge
Publisher: World Scientific
Total Pages: 341
Release: 1991-06-05
Genre: Science
ISBN: 9814507423

Contents:Notes on Subfactors and Statistical Mechanics (V F R Jones)Polynomial Invariants in Knot Theory (L H Kauffman)Algebras of Loops on Surfaces, Algebras of Knots, and Quantization (V G Turaev)Quantum Groups (L Faddeev et al.)Introduction to the Yang-Baxter Equation (M Jimbo)Integrable Systems Related to Braid Groups and Yang-Baxter Equation (T Kohno)The Yang-Baxter Relation: A New Tool for Knot Theory (Y Akutsu et al.)Akutsu-Wadati Link Polynomials from Feynman-Kauffman Diagrams (M-L Ge et al.)Quantum Field Theory and the Jones Polynomial (E Witten) Readership: Mathematical physicists.

Exactly Solved Models: A Journey In Statistical Mechanics - Selected Papers With Commentaries (1963–2008)

Exactly Solved Models: A Journey In Statistical Mechanics - Selected Papers With Commentaries (1963–2008)
Author: Fa Yueh Wu
Publisher: World Scientific
Total Pages: 661
Release: 2009-03-03
Genre: Science
ISBN: 9814471224

This unique volume provides a comprehensive overview of exactly solved models in statistical mechanics by looking at the scientific achievements of F Y Wu in this and related fields, which span four decades of his career. The book is organized into topics ranging from lattice models in condensed matter physics to graph theory in mathematics, and includes the author's pioneering contributions. Through insightful commentaries, the author presents an overview of each of the topics and an insider's look at how crucial developments emerged. With the inclusion of important pedagogical review articles by the author, Exactly Solved Models is an indispensable learning tool for graduate students, and an essential reference and source book for researchers in physics and mathematics as well as historians of science.

Knot Theory and Its Applications

Knot Theory and Its Applications
Author: Kunio Murasugi
Publisher: Springer Science & Business Media
Total Pages: 348
Release: 2009-12-29
Genre: Mathematics
ISBN: 0817647198

This book introduces the study of knots, providing insights into recent applications in DNA research and graph theory. It sets forth fundamental facts such as knot diagrams, braid representations, Seifert surfaces, tangles, and Alexander polynomials. It also covers more recent developments and special topics, such as chord diagrams and covering spaces. The author avoids advanced mathematical terminology and intricate techniques in algebraic topology and group theory. Numerous diagrams and exercises help readers understand and apply the theory. Each chapter includes a supplement with interesting historical and mathematical comments.

The Knot Book

The Knot Book
Author: Colin Conrad Adams
Publisher: American Mathematical Soc.
Total Pages: 330
Release: 2004
Genre: Mathematics
ISBN: 0821836781

Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.

A Survey of Knot Theory

A Survey of Knot Theory
Author: Akio Kawauchi
Publisher: Birkhäuser
Total Pages: 431
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034892276

Knot theory is a rapidly developing field of research with many applications, not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of this theory from its very beginnings to today's most recent research results. An indispensable book for everyone concerned with knot theory.

Nonlinear Physics

Nonlinear Physics
Author: Chaohao Gu
Publisher: Springer Science & Business Media
Total Pages: 299
Release: 2012-12-06
Genre: Science
ISBN: 3642841481

These refereed proceedings present recent developments on specific mathematical and physical aspects of nonlinear dynamics. The new findings discussed in here will be equally useful to graduate students and researchers. The topics dealt with cover a wide range of phenomena: solitons, integrable systems, Hamiltonian structures, Bäcklund and Darboux transformation, symmetries, fi- nite-dimensional dynamical systems, quantum and statistical mechanics, knot theory and braid group, R-matrix method, Hirota and Painlevé analysis, and applications to water waves, lattices, porous media, string theory and even cellular automata.

Knots And Physics (Second Edition)

Knots And Physics (Second Edition)
Author: Louis H Kauffman
Publisher: World Scientific
Total Pages: 739
Release: 1994-01-15
Genre: Mathematics
ISBN: 9814502375

In this second edition, the following recent papers have been added: “Gauss Codes, Quantum Groups and Ribbon Hopf Algebras”, “Spin Networks, Topology and Discrete Physics”, “Link Polynomials and a Graphical Calculus” and “Knots Tangles and Electrical Networks”. An appendix with a discussion on invariants of embedded graphs and Vassiliev invariants has also been included.This book is an introduction to knot and link invariants as generalized amplitudes (vacuum-vacuum amplitudes) for a quasi-physical process. The demands of knot theory, coupled with a quantum statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward knot theory and its relations with these subjects. This has the advantage of providing very direct access to the algebra and to the combinatorial topology, as well as the physical ideas. This book is divided into 2 parts: Part I of the book is a systematic course in knots and physics starting from the ground up. Part II is a set of lectures on various topics related to and sometimes based on Part I. Part II also explores some side-topics such as frictional properties of knots, relations with combinatorics and knots in dynamical systems.