Boundary Value Problems Integral Equations And Related Problems
Download Boundary Value Problems Integral Equations And Related Problems full books in PDF, epub, and Kindle. Read online free Boundary Value Problems Integral Equations And Related Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : N. I. Muskhelishvili |
Publisher | : Courier Corporation |
Total Pages | : 466 |
Release | : 2013-02-19 |
Genre | : Mathematics |
ISBN | : 0486145069 |
DIVHigh-level treatment of one-dimensional singular integral equations covers Holder Condition, Hilbert and Riemann-Hilbert problems, Dirichlet problem, more. 1953 edition. /div
Author | : M.D.Raisinghania |
Publisher | : S. Chand Publishing |
Total Pages | : 519 |
Release | : 2007 |
Genre | : Science |
ISBN | : 8121928052 |
Strictly according to the latest syllabus of U.G.C.for Degree level students and for various engineering and professional examinations such as GATE, C.S.I.R NET/JRFand SLET etc. For M.A./M.Sc (Mathematics) also.
Author | : F. D. Gakhov |
Publisher | : Elsevier |
Total Pages | : 585 |
Release | : 2014-07-10 |
Genre | : Mathematics |
ISBN | : 1483164985 |
Boundary Value Problems is a translation from the Russian of lectures given at Kazan and Rostov Universities, dealing with the theory of boundary value problems for analytic functions. The emphasis of the book is on the solution of singular integral equations with Cauchy and Hilbert kernels. Although the book treats the theory of boundary value problems, emphasis is on linear problems with one unknown function. The definition of the Cauchy type integral, examples, limiting values, behavior, and its principal value are explained. The Riemann boundary value problem is emphasized in considering the theory of boundary value problems of analytic functions. The book then analyzes the application of the Riemann boundary value problem as applied to singular integral equations with Cauchy kernel. A second fundamental boundary value problem of analytic functions is the Hilbert problem with a Hilbert kernel; the application of the Hilbert problem is also evaluated. The use of Sokhotski's formulas for certain integral analysis is explained and equations with logarithmic kernels and kernels with a weak power singularity are solved. The chapters in the book all end with some historical briefs, to give a background of the problem(s) discussed. The book will be very valuable to mathematicians, students, and professors in advanced mathematics and geometrical functions.
Author | : Sergej Rjasanow |
Publisher | : Springer Science & Business Media |
Total Pages | : 285 |
Release | : 2007-04-17 |
Genre | : Mathematics |
ISBN | : 0387340424 |
This book provides a detailed description of fast boundary element methods, all based on rigorous mathematical analysis. In particular, the authors use a symmetric formulation of boundary integral equations as well as discussing Galerkin discretisation. All the necessary related stability and error estimates are derived. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given.
Author | : Jian-Ke Lu |
Publisher | : World Scientific |
Total Pages | : 484 |
Release | : 1993 |
Genre | : Mathematics |
ISBN | : 9789810210205 |
This book deals with boundary value problems for analytic functions with applications to singular integral equations. New and simpler proofs of certain classical results such as the Plemelj formula, the Privalov theorem and the Poincar-Bertrand formula are given. Nearly one third of this book contains the author's original works, most of which have not been published in English before and, hence, were previously unknown to most readers in the world.It consists of 7 chapters together with an appendix: Chapter I describes the basic knowledge on Cauchy-type integrals and Cauchy principal value integrals; Chapters II and III study, respectively, fundamental boundary value problems and their applications to singular integral equations for closed contours; Chapters IV and V discuss the same problems for curves with nodes (including open arcs); Chaper VI deals with similar problems for systems of functions; Chapter VII is concerned with some miscellaneous problems and the Appendix contains some basic results on Fredholm integral equations. In most sections, there are carefully selected sets of exercises, some of which supplement the text of the sections; answers/hints are also given for some of these exercises.For graduate students or seniors, all the 7 chapters can be used for a full year course, while the first 3 chapters may be used for a one-semester course.
Author | : Guo Chun Wen |
Publisher | : World Scientific |
Total Pages | : 436 |
Release | : 2011 |
Genre | : Mathematics |
ISBN | : 9814327859 |
In this volume, we report new results about various boundary value problems for partial differential equations and functional equations, theory and methods of integral equations and integral operators including singular integral equations, applications of boundary value problems and integral equations to mechanics and physics, numerical methods of integral equations and boundary value problems, theory and methods for inverse problems of mathematical physics, Clifford analysis and related problems. Contributors include: L Baratchart, B L Chen, D C Chen, S S Ding, K Q Lan, A Farajzadeh, M G Fei, T Kosztolowicz, A Makin, T Qian, J M Rassias, J Ryan, C-Q Ru, P Schiavone, P Wang, Q S Zhang, X Y Zhang, S Y Du, H Y Gao, X Li, Y Y Qiao, G C Wen, Z T Zhang, etc.
Author | : Mark A. Pinsky |
Publisher | : American Mathematical Soc. |
Total Pages | : 545 |
Release | : 2011 |
Genre | : Mathematics |
ISBN | : 0821868896 |
Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.
Author | : George C. Hsiao |
Publisher | : Springer Nature |
Total Pages | : 783 |
Release | : 2021-03-26 |
Genre | : Mathematics |
ISBN | : 3030711277 |
This is the second edition of the book which has two additional new chapters on Maxwell’s equations as well as a section on properties of solution spaces of Maxwell’s equations and their trace spaces. These two new chapters, which summarize the most up-to-date results in the literature for the Maxwell’s equations, are sufficient enough to serve as a self-contained introductory book on the modern mathematical theory of boundary integral equations in electromagnetics. The book now contains 12 chapters and is divided into two parts. The first six chapters present modern mathematical theory of boundary integral equations that arise in fundamental problems in continuum mechanics and electromagnetics based on the approach of variational formulations of the equations. The second six chapters present an introduction to basic classical theory of the pseudo-differential operators. The aforementioned corresponding boundary integral operators can now be recast as pseudo-differential operators. These serve as concrete examples that illustrate the basic ideas of how one may apply the theory of pseudo-differential operators and their calculus to obtain additional properties for the corresponding boundary integral operators. These two different approaches are complementary to each other. Both serve as the mathematical foundation of the boundary element methods, which have become extremely popular and efficient computational tools for boundary problems in applications. This book contains a wide spectrum of boundary integral equations arising in fundamental problems in continuum mechanics and electromagnetics. The book is a major scholarly contribution to the modern approaches of boundary integral equations, and should be accessible and useful to a large community of advanced graduate students and researchers in mathematics, physics, and engineering.
Author | : Johnny Henderson |
Publisher | : Academic Press |
Total Pages | : 323 |
Release | : 2015-10-30 |
Genre | : Mathematics |
ISBN | : 0128036796 |
Boundary Value Problems for Systems of Differential, Difference and Fractional Equations: Positive Solutions discusses the concept of a differential equation that brings together a set of additional constraints called the boundary conditions. As boundary value problems arise in several branches of math given the fact that any physical differential equation will have them, this book will provide a timely presentation on the topic. Problems involving the wave equation, such as the determination of normal modes, are often stated as boundary value problems. To be useful in applications, a boundary value problem should be well posed. This means that given the input to the problem there exists a unique solution, which depends continuously on the input. Much theoretical work in the field of partial differential equations is devoted to proving that boundary value problems arising from scientific and engineering applications are in fact well-posed. - Explains the systems of second order and higher orders differential equations with integral and multi-point boundary conditions - Discusses second order difference equations with multi-point boundary conditions - Introduces Riemann-Liouville fractional differential equations with uncoupled and coupled integral boundary conditions
Author | : Guo Chun Wen |
Publisher | : World Scientific |
Total Pages | : 338 |
Release | : 2000-02-22 |
Genre | : Science |
ISBN | : 981454311X |
In this proceedings volume, the following topics are discussed: (1) various boundary value problems for partial differential equations and functional equations, including free and moving boundary problems; (2) the theory and methods of integral equations and integral operators, including singular integral equations; (3) applications of boundary value problems and integral equations to mechanics and physics; (4) numerical methods of integral equations and boundary value problems; and (5) some problems related with analysis and the foregoing subjects.