Critical Point Theory

Critical Point Theory
Author: Martin Schechter
Publisher: Springer Nature
Total Pages: 347
Release: 2020-05-30
Genre: Mathematics
ISBN: 303045603X

This monograph collects cutting-edge results and techniques for solving nonlinear partial differential equations using critical points. Including many of the author’s own contributions, a range of proofs are conveniently collected here, Because the material is approached with rigor, this book will serve as an invaluable resource for exploring recent developments in this active area of research, as well as the numerous ways in which critical point theory can be applied. Different methods for finding critical points are presented in the first six chapters. The specific situations in which these methods are applicable is explained in detail. Focus then shifts toward the book’s main subject: applications to problems in mathematics and physics. These include topics such as Schrödinger equations, Hamiltonian systems, elliptic systems, nonlinear wave equations, nonlinear optics, semilinear PDEs, boundary value problems, and equations with multiple solutions. Readers will find this collection of applications convenient and thorough, with detailed proofs appearing throughout. Critical Point Theory will be ideal for graduate students and researchers interested in solving differential equations, and for those studying variational methods. An understanding of fundamental mathematical analysis is assumed. In particular, the basic properties of Hilbert and Banach spaces are used.

Variational Methods For Strongly Indefinite Problems

Variational Methods For Strongly Indefinite Problems
Author: Yanheng Ding
Publisher: World Scientific
Total Pages: 177
Release: 2007-07-30
Genre: Mathematics
ISBN: 9814474509

This unique book focuses on critical point theory for strongly indefinite functionals in order to deal with nonlinear variational problems in areas such as physics, mechanics and economics. With the original ingredients of Lipschitz partitions of unity of gage spaces (nonmetrizable spaces), Lipschitz normality, and sufficient conditions for the normality, as well as existence-uniqueness of flow of ODE on gage spaces, the book presents for the first time a deformation theory in locally convex topological vector spaces. It also offers satisfying variational settings for homoclinic-type solutions to Hamiltonian systems, Schrödinger equations, Dirac equations and diffusion systems, and describes recent developments in studying these problems. The concepts and methods used open up new topics worthy of in-depth exploration, and link the subject with other branches of mathematics, such as topology and geometry, providing a perspective for further studies in these areas. The analytical framework can be used to handle more infinite-dimensional Hamiltonian systems.

The Nonlinear Schrödinger Equation

The Nonlinear Schrödinger Equation
Author: Catherine Sulem
Publisher: Springer Science & Business Media
Total Pages: 363
Release: 2007-06-30
Genre: Mathematics
ISBN: 0387227687

Filling the gap between the mathematical literature and applications to domains, the authors have chosen to address the problem of wave collapse by several methods ranging from rigorous mathematical analysis to formal aymptotic expansions and numerical simulations.

Minimax Theorems

Minimax Theorems
Author: Michel Willem
Publisher: Springer Science & Business Media
Total Pages: 168
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461241464

Many boundary value problems are equivalent to Au=O (1) where A : X --+ Y is a mapping between two Banach spaces. When the problem is variational, there exists a differentiable functional rand inf.

Minimax Methods in Critical Point Theory with Applications to Differential Equations

Minimax Methods in Critical Point Theory with Applications to Differential Equations
Author: Paul H. Rabinowitz
Publisher: American Mathematical Soc.
Total Pages: 110
Release: 1986-07-01
Genre: Mathematics
ISBN: 0821807153

The book provides an introduction to minimax methods in critical point theory and shows their use in existence questions for nonlinear differential equations. An expanded version of the author's 1984 CBMS lectures, this volume is the first monograph devoted solely to these topics. Among the abstract questions considered are the following: the mountain pass and saddle point theorems, multiple critical points for functionals invariant under a group of symmetries, perturbations from symmetry, and variational methods in bifurcation theory. The book requires some background in functional analysis and differential equations, especially elliptic partial differential equations. It is addressed to mathematicians interested in differential equations and/or nonlinear functional analysis, particularly critical point theory.

Hamiltonian Dynamics and Celestial Mechanics

Hamiltonian Dynamics and Celestial Mechanics
Author: Donald Saari
Publisher: American Mathematical Soc.
Total Pages: 250
Release: 1996
Genre: Mathematics
ISBN: 0821805665

The symbiotic of these two topics creates a natural combination for a conference on dynamics. Topics covered include twist maps, the Aubrey-Mather theory, Arnold diffusion, qualitative and topological studies of systems, and variational methods, as well as specific topics such as Melnikov's procedure and the singularity properties of particular systems.

Sign-Changing Critical Point Theory

Sign-Changing Critical Point Theory
Author: Wenming Zou
Publisher: Springer Science & Business Media
Total Pages: 288
Release: 2008-12-15
Genre: Mathematics
ISBN: 0387766588

Many nonlinear problems in physics, engineering, biology and social sciences can be reduced to finding critical points of functionals. While minimax and Morse theories provide answers to many situations and problems on the existence of multiple critical points of a functional, they often cannot provide much-needed additional properties of these critical points. Sign-changing critical point theory has emerged as a new area of rich research on critical points of a differentiable functional with important applications to nonlinear elliptic PDEs. This book is intended for advanced graduate students and researchers involved in sign-changing critical point theory, PDEs, global analysis, and nonlinear functional analysis.

Handbook of Differential Equations:Stationary Partial Differential Equations

Handbook of Differential Equations:Stationary Partial Differential Equations
Author: Michel Chipot
Publisher: Elsevier
Total Pages: 625
Release: 2005-08-19
Genre: Mathematics
ISBN: 0080461077

A collection of self contained, state-of-the-art surveys. The authors have made an effort to achieve readability for mathematicians and scientists from other fields, for this series of handbooks to be a new reference for research, learning and teaching.Partial differential equations represent one of the most rapidly developing topics in mathematics. This is due to their numerous applications in science and engineering on the one hand and to the challenge and beauty of associated mathematical problems on the other.Key features:- Self-contained volume in series covering one of the most rapid developing topics in mathematics.- 7 Chapters, enriched with numerous figures originating from numerical simulations.- Written by well known experts in the field.- Self-contained volume in series covering one of the most rapid developing topics in mathematics.- 7 Chapters, enriched with numerous figures originating from numerical simulations.- Written by well known experts in the field.

Nonlinear Analysis and Semilinear Elliptic Problems

Nonlinear Analysis and Semilinear Elliptic Problems
Author: Antonio Ambrosetti
Publisher: Cambridge University Press
Total Pages: 334
Release: 2007-01-04
Genre: Mathematics
ISBN: 9780521863209

A graduate text explaining how methods of nonlinear analysis can be used to tackle nonlinear differential equations. Suitable for mathematicians, physicists and engineers, topics covered range from elementary tools of bifurcation theory and analysis to critical point theory and elliptic partial differential equations. The book is amply illustrated with many exercises.