Boolean Constructions in Universal Algebras

Boolean Constructions in Universal Algebras
Author: A.G. Pinus
Publisher: Springer Science & Business Media
Total Pages: 357
Release: 2013-04-17
Genre: Mathematics
ISBN: 9401709386

During the last few decades the ideas, methods, and results of the theory of Boolean algebras have played an increasing role in various branches of mathematics and cybernetics. This monograph is devoted to the fundamentals of the theory of Boolean constructions in universal algebra. Also considered are the problems of presenting different varieties of universal algebra with these constructions, and applications for investigating the spectra and skeletons of varieties of universal algebras. For researchers whose work involves universal algebra and logic.

Countable Boolean Algebras and Decidability

Countable Boolean Algebras and Decidability
Author: Sergey Goncharov
Publisher: Springer Science & Business Media
Total Pages: 344
Release: 1997-01-31
Genre: Mathematics
ISBN: 9780306110610

This book describes the latest Russian research covering the structure and algorithmic properties of Boolean algebras from the algebraic and model-theoretic points of view. A significantly revised version of the author's Countable Boolean Algebras (Nauka, Novosibirsk, 1989), the text presents new results as well as a selection of open questions on Boolean algebras. Other current features include discussions of the Kottonen algebras in enrichments by ideals and automorphisms, and the properties of the automorphism groups.

An Invitation to General Algebra and Universal Constructions

An Invitation to General Algebra and Universal Constructions
Author: George M. Bergman
Publisher: Springer
Total Pages: 574
Release: 2015-02-05
Genre: Mathematics
ISBN: 3319114786

Rich in examples and intuitive discussions, this book presents General Algebra using the unifying viewpoint of categories and functors. Starting with a survey, in non-category-theoretic terms, of many familiar and not-so-familiar constructions in algebra (plus two from topology for perspective), the reader is guided to an understanding and appreciation of the general concepts and tools unifying these constructions. Topics include: set theory, lattices, category theory, the formulation of universal constructions in category-theoretic terms, varieties of algebras, and adjunctions. A large number of exercises, from the routine to the challenging, interspersed through the text, develop the reader's grasp of the material, exhibit applications of the general theory to diverse areas of algebra, and in some cases point to outstanding open questions. Graduate students and researchers wishing to gain fluency in important mathematical constructions will welcome this carefully motivated book.

Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science

Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science
Author: Janusz Czelakowski
Publisher: Springer
Total Pages: 476
Release: 2018-03-20
Genre: Philosophy
ISBN: 331974772X

This book celebrates the work of Don Pigozzi on the occasion of his 80th birthday. In addition to articles written by leading specialists and his disciples, it presents Pigozzi’s scientific output and discusses his impact on the development of science. The book both catalogues his works and offers an extensive profile of Pigozzi as a person, sketching the most important events, not only related to his scientific activity, but also from his personal life. It reflects Pigozzi's contribution to the rise and development of areas such as abstract algebraic logic (AAL), universal algebra and computer science, and introduces new scientific results. Some of the papers also present chronologically ordered facts relating to the development of the disciplines he contributed to, especially abstract algebraic logic. The book offers valuable source material for historians of science, especially those interested in history of mathematics and logic.

Clifford Algebras and Spinor Structures

Clifford Algebras and Spinor Structures
Author: Rafal Ablamowicz
Publisher: Springer Science & Business Media
Total Pages: 468
Release: 1995-02-28
Genre: Mathematics
ISBN: 9780792333661

This volume introduces mathematicians and physicists to a crossing point of algebra, physics, differential geometry and complex analysis. The book follows the French tradition of Cartan, Chevalley and Crumeyrolle and summarizes Crumeyrolle's own work on exterior algebra and spinor structures. The depth and breadth of Crumeyrolle's research interests and influence in the field is investigated in a number of articles. Of interest to physicists is the modern presentation of Crumeyrolle's approach to Weyl spinors, and to his spinoriality groups, which are formulated with spinor operators of Kustaanheimo and Hestenes. The Dirac equation and Dirac operator are studied both from the complex analytic and differential geometric points of view, in the modern sense of Ryan and Trautman. For mathematicians and mathematical physicists whose research involves algebra, quantum mechanics and differential geometry.

Jordan, Real and Lie Structures in Operator Algebras

Jordan, Real and Lie Structures in Operator Algebras
Author: Sh. Ayupov
Publisher: Springer Science & Business Media
Total Pages: 239
Release: 2013-03-14
Genre: Mathematics
ISBN: 9401586055

The theory of operator algebras acting on a Hilbert space was initiated in thirties by papers of Murray and von Neumann. In these papers they have studied the structure of algebras which later were called von Neu mann algebras or W* -algebras. They are weakly closed complex *-algebras of operators on a Hilbert space. At present the theory of von Neumann algebras is a deeply developed theory with various applications. In the framework of von Neumann algebras theory the study of fac tors (i.e. W* -algebras with trivial centres) is very important, since they are comparatively simple and investigation of general W* -algebras can be reduced to the case of factors. Therefore the theory of factors is one of the main tools in the structure theory of von Neumann algebras. In the middle of sixtieth Topping [To 1] and Stormer [S 2] have ini tiated the study of Jordan (non associative and real) analogues of von Neumann algebras - so called JW-algebras, i.e. real linear spaces of self adjoint opera.tors on a complex Hilbert space, which contain the identity operator 1. closed with respect to the Jordan (i.e. symmetrised) product INTRODUCTION 2 x 0 y = ~(Xy + yx) and closed in the weak operator topology. The structure of these algebras has happened to be close to the struc ture of von Neumann algebras and it was possible to apply ideas and meth ods similar to von Neumann algebras theory in the study of JW-algebras.

Universal Algebra, Algebraic Logic, and Databases

Universal Algebra, Algebraic Logic, and Databases
Author: B. Plotkin
Publisher: Springer Science & Business Media
Total Pages: 445
Release: 2012-12-06
Genre: Mathematics
ISBN: 940110820X

Modern algebra, which not long ago seemed to be a science divorced from real life, now has numerous applications. Many fine algebraic structures are endowed with meaningful contents. Now and then practice suggests new and unexpected structures enriching algebra. This does not mean that algebra has become merely a tool for applications. Quite the contrary, it significantly benefits from the new connections. The present book is devoted to some algebraic aspects of the theory of databases. It consists of three parts. The first part contains information about universal algebra, algebraic logic is the subject of the second part, and the third one deals with databases. The algebraic material of the flI'St two parts serves the common purpose of applying algebra to databases. The book is intended for use by mathematicians, and mainly by algebraists, who realize the necessity to unite theory and practice. It is also addressed to programmers, engineers and all potential users of mathematics who want to construct their models with the help of algebra and logic. Nowadays, the majority of professional mathematicians work in close cooperation with representatives of applied sciences and even industrial technology. It is neces sary to develop an ability to see mathematics in different particular situations. One of the tasks of this book is to promote the acquisition of such skills.

Basic Structures of Modern Algebra

Basic Structures of Modern Algebra
Author: Y. Bahturin
Publisher: Springer Science & Business Media
Total Pages: 425
Release: 2013-03-09
Genre: Mathematics
ISBN: 9401708398

This book has developed from a series of lectures which were given by the author in mechanics-mathematics department of the Moscow State University. In 1981 the course "Additional chapters in algebra" replaced the course "Gen eral algebra" which was founded by A. G. Kurosh (1908-1971), professor and head of the department of higher algebra for a period of several decades. The material of this course formed the basis of A. G. Kurosh's well-known book "Lectures on general algebra" (Moscow,1962; 2-nd edition: Moscow, Nauka, 1973) and the book "General algebra. Lectures of 1969-1970. " (Moscow, Nauka, 1974). Another book based on the course, "Elements of general al gebra" (M. : Nauka, 1983) was published by L. A. Skorniakov, professor, now deceased, in the same department. It should be noted that A. G. Kurosh was not only the lecturer for the course "General algebra" but he was also the recognized leader of the scientific school of the same name. It is difficult to determine the limits of this school; however, the "Lectures . . . " of 1962 men tioned above contain some material which exceed these limits. Eventually this effect intensified: the lectures of the course were given by many well-known scientists, and some of them see themselves as "general algebraists". Each lecturer brought significant originality not only in presentation of the material but in the substance of the course. Therefore not all material which is now accepted as necessary for algebraic students fits within the scope of general algebra.