BITCOIN ANALYSIS, VISUALIZATION, FORECASTING, AND PREDICTION WITH PYTHON GUI

BITCOIN ANALYSIS, VISUALIZATION, FORECASTING, AND PREDICTION WITH PYTHON GUI
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
Total Pages: 278
Release: 2022-06-04
Genre: Business & Economics
ISBN:

Bitcoin is a digital currency created in January 2009. It follows the ideas set out in a whitepaper by the mysterious and pseudonymous Satoshi Nakamoto.1 The identity of the person or persons who created the technology is still a mystery. Bitcoin offers the promise of lower transaction fees than traditional online payment mechanisms and, unlike government-issued currencies, it is operated by a decentralized authority. This dataset provides the history of daily prices of Bitcoin. The data starts from 17-Sep-2014 and is updated till 09-July-2021. It contains 2747 rows and 7 columns. The columns in the dataset are Date, Open, High, Low, Close, Adj Close, and Volume. In this project, you will involve technical indicators such as daily returns, Moving Average Convergence-Divergence (MACD), Relative Strength Index (RSI), Simple Moving Average (SMA), lower and upper bands, and standard deviation. To perform forecasting based on regression on Adj Close price of Bitcoin, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, MLP regression, Lasso regression, and Ridge regression. The machine learning models used predict Bitcoin daily returns as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, MLP classifier, and Extra Trees classifier. Finally, you will develop GUI to plot boundary decision, distribution of features, feature importance, predicted values versus true values, confusion matrix, learning curve, performance of the model, and scalability of the model.

Predictive Analytics and Data Mining

Predictive Analytics and Data Mining
Author: Vijay Kotu
Publisher: Morgan Kaufmann
Total Pages: 447
Release: 2014-11-27
Genre: Computers
ISBN: 0128016507

Put Predictive Analytics into ActionLearn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining.You’ll be able to:1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process.2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases.3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples

AI and Financial Markets

AI and Financial Markets
Author: Shigeyuki Hamori
Publisher: MDPI
Total Pages: 230
Release: 2020-07-01
Genre: Business & Economics
ISBN: 3039362240

Artificial intelligence (AI) is regarded as the science and technology for producing an intelligent machine, particularly, an intelligent computer program. Machine learning is an approach to realizing AI comprising a collection of statistical algorithms, of which deep learning is one such example. Due to the rapid development of computer technology, AI has been actively explored for a variety of academic and practical purposes in the context of financial markets. This book focuses on the broad topic of “AI and Financial Markets”, and includes novel research associated with this topic. The book includes contributions on the application of machine learning, agent-based artificial market simulation, and other related skills to the analysis of various aspects of financial markets.

Data Analysis from Scratch with Python

Data Analysis from Scratch with Python
Author: Peters Morgan
Publisher: Createspace Independent Publishing Platform
Total Pages: 152
Release: 2018-08-14
Genre: Data mining
ISBN: 9781725678095

******Free eBook for customers who purchase the print book from Amazon****** Are you thinking of becoming a data analyst using Python? If you are looking for a complete guide to data analysis using Python language and its library that will help you to become an effective data scientist, this book is for you. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses. To get the most out of the concepts that would be covered, readers are advised to adopt hands on approach, which would lead to better mental representations. Step By Step Guide and Visual Illustrations and Examples The Book give complete instructions for manipulating, processing, cleaning, modeling and crunching datasets in Python. This is a hands-on guide with practical case studies of data analysis problems effectively. You will learn pandas, NumPy, IPython, and Jupiter in the Process. Target Users This book is a practical introduction to data science tools in Python. It is ideal for analyst's beginners to Python and for Python programmers new to data science and computer science. Instead of tough math formulas, this book contains several graphs and images. What's Inside This Book? Introduction Why Choose Python for Data Science & Machine Learning Prerequisites & Reminders Python Quick Review Overview & Objectives A Quick Example Getting & Processing Data Data Visualization Supervised & Unsupervised Learning Regression Simple Linear Regression Multiple Linear Regression Decision Tree Random Forest Classification Logistic Regression K-Nearest Neighbors Decision Tree Classification Random Forest Classification Clustering Goals & Uses of Clustering K-Means Clustering Anomaly Detection Association Rule Learning Explanation Apriori Reinforcement Learning What is Reinforcement Learning Comparison with Supervised & Unsupervised Learning Applying Reinforcement Learning Neural Networks An Idea of How the Brain Works Potential & Constraints Here's an Example Natural Language Processing Analyzing Words & Sentiments Using NLTK Model Selection & Improving Performance Sources & References Frequently Asked Questions Q: Is this book for me and do I need programming experience? A: if you want to smash Python for data analysis, this book is for you. Little programming experience is required. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK. Q: Does this book include everything I need to become a data science expert? A: Unfortunately, no. This book is designed for readers taking their first steps in data analysis and further learning will be required beyond this book to master all aspects. Q: Can I have a refund if this book is not fitted for me? A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email at [email protected]. AI Sciences Company offers you a free eBooks at http: //aisciences.net/free/

Applied Cryptography

Applied Cryptography
Author: Bruce Schneier
Publisher: John Wiley & Sons
Total Pages: 926
Release: 2017-05-25
Genre: Computers
ISBN: 1119439027

From the world's most renowned security technologist, Bruce Schneier, this 20th Anniversary Edition is the most definitive reference on cryptography ever published and is the seminal work on cryptography. Cryptographic techniques have applications far beyond the obvious uses of encoding and decoding information. For developers who need to know about capabilities, such as digital signatures, that depend on cryptographic techniques, there's no better overview than Applied Cryptography, the definitive book on the subject. Bruce Schneier covers general classes of cryptographic protocols and then specific techniques, detailing the inner workings of real-world cryptographic algorithms including the Data Encryption Standard and RSA public-key cryptosystems. The book includes source-code listings and extensive advice on the practical aspects of cryptography implementation, such as the importance of generating truly random numbers and of keeping keys secure. ". . .the best introduction to cryptography I've ever seen. . . .The book the National Security Agency wanted never to be published. . . ." -Wired Magazine ". . .monumental . . . fascinating . . . comprehensive . . . the definitive work on cryptography for computer programmers . . ." -Dr. Dobb's Journal ". . .easily ranks as one of the most authoritative in its field." -PC Magazine The book details how programmers and electronic communications professionals can use cryptography-the technique of enciphering and deciphering messages-to maintain the privacy of computer data. It describes dozens of cryptography algorithms, gives practical advice on how to implement them into cryptographic software, and shows how they can be used to solve security problems. The book shows programmers who design computer applications, networks, and storage systems how they can build security into their software and systems. With a new Introduction by the author, this premium edition will be a keepsake for all those committed to computer and cyber security.

Python for Algorithmic Trading

Python for Algorithmic Trading
Author: Yves Hilpisch
Publisher: O'Reilly Media
Total Pages: 380
Release: 2020-11-12
Genre: Computers
ISBN: 1492053325

Algorithmic trading, once the exclusive domain of institutional players, is now open to small organizations and individual traders using online platforms. The tool of choice for many traders today is Python and its ecosystem of powerful packages. In this practical book, author Yves Hilpisch shows students, academics, and practitioners how to use Python in the fascinating field of algorithmic trading. You'll learn several ways to apply Python to different aspects of algorithmic trading, such as backtesting trading strategies and interacting with online trading platforms. Some of the biggest buy- and sell-side institutions make heavy use of Python. By exploring options for systematically building and deploying automated algorithmic trading strategies, this book will help you level the playing field. Set up a proper Python environment for algorithmic trading Learn how to retrieve financial data from public and proprietary data sources Explore vectorization for financial analytics with NumPy and pandas Master vectorized backtesting of different algorithmic trading strategies Generate market predictions by using machine learning and deep learning Tackle real-time processing of streaming data with socket programming tools Implement automated algorithmic trading strategies with the OANDA and FXCM trading platforms

Machine Learning Engineering with MLflow

Machine Learning Engineering with MLflow
Author: Natu Lauchande
Publisher: Packt Publishing Ltd
Total Pages: 249
Release: 2021-08-27
Genre: Computers
ISBN: 1800561695

Get up and running, and productive in no time with MLflow using the most effective machine learning engineering approach Key FeaturesExplore machine learning workflows for stating ML problems in a concise and clear manner using MLflowUse MLflow to iteratively develop a ML model and manage it Discover and work with the features available in MLflow to seamlessly take a model from the development phase to a production environmentBook Description MLflow is a platform for the machine learning life cycle that enables structured development and iteration of machine learning models and a seamless transition into scalable production environments. This book will take you through the different features of MLflow and how you can implement them in your ML project. You will begin by framing an ML problem and then transform your solution with MLflow, adding a workbench environment, training infrastructure, data management, model management, experimentation, and state-of-the-art ML deployment techniques on the cloud and premises. The book also explores techniques to scale up your workflow as well as performance monitoring techniques. As you progress, you'll discover how to create an operational dashboard to manage machine learning systems. Later, you will learn how you can use MLflow in the AutoML, anomaly detection, and deep learning context with the help of use cases. In addition to this, you will understand how to use machine learning platforms for local development as well as for cloud and managed environments. This book will also show you how to use MLflow in non-Python-based languages such as R and Java, along with covering approaches to extend MLflow with Plugins. By the end of this machine learning book, you will be able to produce and deploy reliable machine learning algorithms using MLflow in multiple environments. What you will learnDevelop your machine learning project locally with MLflow's different featuresSet up a centralized MLflow tracking server to manage multiple MLflow experimentsCreate a model life cycle with MLflow by creating custom modelsUse feature streams to log model results with MLflowDevelop the complete training pipeline infrastructure using MLflow featuresSet up an inference-based API pipeline and batch pipeline in MLflowScale large volumes of data by integrating MLflow with high-performance big data librariesWho this book is for This book is for data scientists, machine learning engineers, and data engineers who want to gain hands-on machine learning engineering experience and learn how they can manage an end-to-end machine learning life cycle with the help of MLflow. Intermediate-level knowledge of the Python programming language is expected.

Artificial Intelligence with Python

Artificial Intelligence with Python
Author: Prateek Joshi
Publisher: Packt Publishing Ltd
Total Pages: 437
Release: 2017-01-27
Genre: Computers
ISBN: 1786469677

Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.

Mastering Machine Learning for Penetration Testing

Mastering Machine Learning for Penetration Testing
Author: Chiheb Chebbi
Publisher: Packt Publishing Ltd
Total Pages: 264
Release: 2018-06-27
Genre: Language Arts & Disciplines
ISBN: 178899311X

Become a master at penetration testing using machine learning with Python Key Features Identify ambiguities and breach intelligent security systems Perform unique cyber attacks to breach robust systems Learn to leverage machine learning algorithms Book Description Cyber security is crucial for both businesses and individuals. As systems are getting smarter, we now see machine learning interrupting computer security. With the adoption of machine learning in upcoming security products, it’s important for pentesters and security researchers to understand how these systems work, and to breach them for testing purposes. This book begins with the basics of machine learning and the algorithms used to build robust systems. Once you’ve gained a fair understanding of how security products leverage machine learning, you'll dive into the core concepts of breaching such systems. Through practical use cases, you’ll see how to find loopholes and surpass a self-learning security system. As you make your way through the chapters, you’ll focus on topics such as network intrusion detection and AV and IDS evasion. We’ll also cover the best practices when identifying ambiguities, and extensive techniques to breach an intelligent system. By the end of this book, you will be well-versed with identifying loopholes in a self-learning security system and will be able to efficiently breach a machine learning system. What you will learn Take an in-depth look at machine learning Get to know natural language processing (NLP) Understand malware feature engineering Build generative adversarial networks using Python libraries Work on threat hunting with machine learning and the ELK stack Explore the best practices for machine learning Who this book is for This book is for pen testers and security professionals who are interested in learning techniques to break an intelligent security system. Basic knowledge of Python is needed, but no prior knowledge of machine learning is necessary.

The Future of Finance

The Future of Finance
Author: Henri Arslanian
Publisher: Springer
Total Pages: 318
Release: 2019-07-15
Genre: Business & Economics
ISBN: 3030145336

This book, written jointly by an engineer and artificial intelligence expert along with a lawyer and banker, is a glimpse on what the future of the financial services will look like and the impact it will have on society. The first half of the book provides a detailed yet easy to understand educational and technical overview of FinTech, artificial intelligence and cryptocurrencies including the existing industry pain points and the new technological enablers. The second half provides a practical, concise and engaging overview of their latest trends and their impact on the future of the financial services industry including numerous use cases and practical examples. The book is a must read for any professional currently working in finance, any student studying the topic or anyone curious on how the future of finance will look like.