Birational Geometry, Kähler–Einstein Metrics and Degenerations

Birational Geometry, Kähler–Einstein Metrics and Degenerations
Author: Ivan Cheltsov
Publisher: Springer Nature
Total Pages: 882
Release: 2023-05-23
Genre: Mathematics
ISBN: 3031178599

This book collects the proceedings of a series of conferences dedicated to birational geometry of Fano varieties held in Moscow, Shanghai and Pohang The conferences were focused on the following two related problems: • existence of Kähler–Einstein metrics on Fano varieties • degenerations of Fano varieties on which two famous conjectures were recently proved. The first is the famous Borisov–Alexeev–Borisov Conjecture on the boundedness of Fano varieties, proved by Caucher Birkar (for which he was awarded the Fields medal in 2018), and the second one is the (arguably even more famous) Tian–Yau–Donaldson Conjecture on the existence of Kähler–Einstein metrics on (smooth) Fano varieties and K-stability, which was proved by Xiuxiong Chen, Sir Simon Donaldson and Song Sun. The solutions for these longstanding conjectures have opened new directions in birational and Kähler geometries. These research directions generated new interesting mathematical problems, attracting the attention of mathematicians worldwide. These conferences brought together top researchers in both fields (birational geometry and complex geometry) to solve some of these problems and understand the relations between them. The result of this activity is collected in this book, which contains contributions by sixty nine mathematicians, who contributed forty three research and survey papers to this volume. Many of them were participants of the Moscow–Shanghai–Pohang conferences, while the others helped to expand the research breadth of the volume—the diversity of their contributions reflects the vitality of modern Algebraic Geometry.

Birational Geometry, Kähler-Einstein Metrics and Degenerations

Birational Geometry, Kähler-Einstein Metrics and Degenerations
Author: Ivan Cheltsov
Publisher:
Total Pages: 0
Release: 2023
Genre:
ISBN: 9783031178603

This book collects the proceedings of a series of conferences dedicated to birational geometry of Fano varieties held in Moscow, Shanghai and Pohang The conferences were focused on the following two related problems: • existence of Kähler-Einstein metrics on Fano varieties • degenerations of Fano varieties on which two famous conjectures were recently proved. The first is the famous Borisov-Alexeev-Borisov Conjecture on the boundedness of Fano varieties, proved by Caucher Birkar (for which he was awarded the Fields medal in 2018), and the second one is the (arguably even more famous) Tian-Yau-Donaldson Conjecture on the existence of Kähler-Einstein metrics on (smooth) Fano varieties and K-stability, which was proved by Xiuxiong Chen, Sir Simon Donaldson and Song Sun. The solutions for these longstanding conjectures have opened new directions in birational and Kähler geometries. These research directions generated new interesting mathematical problems, attracting the attention of mathematicians worldwide. These conferences brought together top researchers in both fields (birational geometry and complex geometry) to solve some of these problems and understand the relations between them. The result of this activity is collected in this book, which contains contributions by sixty nine mathematicians, who contributed forty three research and survey papers to this volume. Many of them were participants of the Moscow-Shanghai-Pohang conferences, while the others helped to expand the research breadth of the volume-the diversity of their contributions reflects the vitality of modern Algebraic Geometry.

An Introduction to the Kähler-Ricci Flow

An Introduction to the Kähler-Ricci Flow
Author: Sebastien Boucksom
Publisher: Springer
Total Pages: 342
Release: 2013-10-02
Genre: Mathematics
ISBN: 3319008196

This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman’s surgeries.

Strings and Geometry

Strings and Geometry
Author: Clay Mathematics Institute. Summer School
Publisher: American Mathematical Soc.
Total Pages: 396
Release: 2004
Genre: Mathematics
ISBN: 9780821837153

Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.

Comparison Geometry

Comparison Geometry
Author: Karsten Grove
Publisher: Cambridge University Press
Total Pages: 280
Release: 1997-05-13
Genre: Mathematics
ISBN: 9780521592222

This is an up to date work on a branch of Riemannian geometry called Comparison Geometry.

Lectures on K3 Surfaces

Lectures on K3 Surfaces
Author: Daniel Huybrechts
Publisher: Cambridge University Press
Total Pages: 499
Release: 2016-09-26
Genre: Mathematics
ISBN: 1316797252

K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.

Transformation Groups in Differential Geometry

Transformation Groups in Differential Geometry
Author: Shoshichi Kobayashi
Publisher: Springer Science & Business Media
Total Pages: 192
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642619819

Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc tures. All geometric structures are not created equal; some are creations of ~ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965.

Mirror Symmetry

Mirror Symmetry
Author: Kentaro Hori
Publisher: American Mathematical Soc.
Total Pages: 954
Release: 2003
Genre: Mathematics
ISBN: 0821829556

This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.

Complex Non-Kähler Geometry

Complex Non-Kähler Geometry
Author: Sławomir Dinew
Publisher: Springer Nature
Total Pages: 256
Release: 2019-11-05
Genre: Mathematics
ISBN: 3030258831

Collecting together the lecture notes of the CIME Summer School held in Cetraro in July 2018, the aim of the book is to introduce a vast range of techniques which are useful in the investigation of complex manifolds. The school consisted of four courses, focusing on both the construction of non-Kähler manifolds and the understanding of a possible classification of complex non-Kähler manifolds. In particular, the courses by Alberto Verjovsky and Andrei Teleman introduced tools in the theory of foliations and analytic techniques for the classification of compact complex surfaces and compact Kähler manifolds, respectively. The courses by Sebastien Picard and Sławomir Dinew focused on analytic techniques in Hermitian geometry, more precisely, on special Hermitian metrics and geometric flows, and on pluripotential theory in complex non-Kähler geometry.

Surveys in Differential Geometry

Surveys in Differential Geometry
Author: Shing-Tung Yau
Publisher:
Total Pages: 696
Release: 2002-05-31
Genre: Geometry, Differential
ISBN: 9781571460691

This volume contains a range of surveys in differential geometry. It includes a photograph section and articles by Michael Atiyah, Egbert Brieskorn, Ciro Ciliberto, Gerard van der Geer, Ralph Cohen, Ernesto Lupercio, Graeme Segal, Simon Donaldson, Daniel Freed, Dorian Goldfeld, Shouwu Zhang, Victor Guillemin, C. Zara, F. Reese Harvey, H. Blaine Lawson Jr., Frederich Hirzebruch, Nigel Hitchen, Dick Kadison, Peter Li, Bong Lian, Kefeng Liu, S.T. Yau, Yu I. Manin, Roger Penrose, Wilfried Schmid, Kari Vilonen, Cliff Taubes, and Cumrun Vafa.