Bilinear Algebra

Bilinear Algebra
Author: Kazimierz Szymiczek
Publisher: Routledge
Total Pages: 508
Release: 2017-11-22
Genre: Mathematics
ISBN: 1351464205

Giving an easily accessible elementary introduction to the algebraic theory of quadratic forms, this book covers both Witt's theory and Pfister's theory of quadratic forms. Leading topics include the geometry of bilinear spaces, classification of bilinear spaces up to isometry depending on the ground field, formally real fields, Pfister forms, the Witt ring of an arbitrary field (characteristic two included), prime ideals of the Witt ring, Brauer group of a field, Hasse and Witt invariants of quadratic forms, and equivalence of fields with respect to quadratic forms. Problem sections are included at the end of each chapter. There are two appendices: the first gives a treatment of Hasse and Witt invariants in the language of Steinberg symbols, and the second contains some more advanced problems in 10 groups, including the u-invariant, reduced and stable Witt rings, and Witt equivalence of fields.

Bilinear Algebra

Bilinear Algebra
Author: Kazimierz Szymiczek
Publisher: CRC Press
Total Pages: 508
Release: 1997-09-05
Genre: Mathematics
ISBN: 9789056990763

Giving an easily accessible elementary introduction to the algebraic theory of quadratic forms, this book covers both Witt's theory and Pfister's theory of quadratic forms. Leading topics include the geometry of bilinear spaces, classification of bilinear spaces up to isometry depending on the ground field, formally real fields, Pfister forms, the Witt ring of an arbitrary field (characteristic two included), prime ideals of the Witt ring, Brauer group of a field, Hasse and Witt invariants of quadratic forms, and equivalence of fields with respect to quadratic forms. Problem sections are included at the end of each chapter. There are two appendices: the first gives a treatment of Hasse and Witt invariants in the language of Steinberg symbols, and the second contains some more advanced problems in 10 groups, including the u-invariant, reduced and stable Witt rings, and Witt equivalence of fields.

Lie Groups and Lie Algebras III

Lie Groups and Lie Algebras III
Author: A.L. Onishchik
Publisher: Springer Science & Business Media
Total Pages: 264
Release: 1994-07-12
Genre: Mathematics
ISBN: 9783540546832

A comprehensive and modern account of the structure and classification of Lie groups and finite-dimensional Lie algebras, by internationally known specialists in the field. This Encyclopaedia volume will be immensely useful to graduate students in differential geometry, algebra and theoretical physics.

Bilinear Forms and Zonal Polynomials

Bilinear Forms and Zonal Polynomials
Author: Arak M. Mathai
Publisher: Springer Science & Business Media
Total Pages: 385
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461242428

The book deals with bilinear forms in real random vectors and their generalizations as well as zonal polynomials and their applications in handling generalized quadratic and bilinear forms. The book is mostly self-contained. It starts from basic principles and brings the readers to the current research level in these areas. It is developed with detailed proofs and illustrative examples for easy readability and self-study. Several exercises are proposed at the end of the chapters. The complicated topic of zonal polynomials is explained in detail in this book. The book concentrates on the theoretical developments in all the topics covered. Some applications are pointed out but no detailed application to any particular field is attempted. This book can be used as a textbook for a one-semester graduate course on quadratic and bilinear forms and/or on zonal polynomials. It is hoped that this book will be a valuable reference source for graduate students and research workers in the areas of mathematical statistics, quadratic and bilinear forms and their generalizations, zonal polynomials, invariant polynomials and related topics, and will benefit statisticians, mathematicians and other theoretical and applied scientists who use any of the above topics in their areas. Chapter 1 gives the preliminaries needed in later chapters, including some Jacobians of matrix transformations. Chapter 2 is devoted to bilinear forms in Gaussian real ran dom vectors, their properties, and techniques specially developed to deal with bilinear forms where the standard methods for handling quadratic forms become complicated.

Symmetric Bilinear Forms

Symmetric Bilinear Forms
Author: John Milnor
Publisher: Springer Science & Business Media
Total Pages: 155
Release: 2013-04-17
Genre: Mathematics
ISBN: 3642883303

The theory cf quadratic forms and the intimately related theory of sym metrie bilinear forms have a lang and rich his tory, highlighted by the work of Legendre, Gauss, Minkowski, and Hasse. (Compare [Dickson] and [Bourbaki, 24, p. 185].) Our exposition will concentrate on the rela tively recent developments which begin with and are inspired by Witt's 1937 paper "Theorie der quadratischen Formen in beliebigen Körpern." We will be particularly interested in the work of A. Pfister and M. Knebusch. However, some older material will be described, particularly in Chapter II. The presentation is based on lectures by Milnor at the Institute for Ad vanced Study, and at Haverford College under the Phillips Lecture Pro gram, during the Fall of 1970, as weIl as Iectures at Princeton University il1 1966. We want to thank J. Cunningham, M. Knebusch, M. Kneser, A. Rosenberg, W. Scharlau and J.-P. Serre for helpful suggestions and corrections. Prerequisites. The reader should be familiar with the rudiments of algebra., incJuding for example the concept of tensor product for mo dules over a commutative ring. A few individual sections will require quite a bit more. The logical relationship between the various chapters can be roughly described by the diagram below. There are also five appendices, largely self-contained, which treat special topics. I. Arbitrary commutative rings I H. The ring of V. Miscellaneous IIl. Fields integers examples IV. Dedekind domains Contents Chapter r. Basie Coneepts ...

Infinite-dimensional Lie Algebras

Infinite-dimensional Lie Algebras
Author: Minoru Wakimoto
Publisher: American Mathematical Soc.
Total Pages: 332
Release: 2001
Genre: Mathematics
ISBN: 9780821826546

This volume begins with an introduction to the structure of finite-dimensional simple Lie algebras, including the representation of ...... root systems, the Cartan matrix, and a Dynkin diagram of a finite-dimensional simple Lie algebra. Continuing on, the main subjects of the book are the structure (real and imaginary root systems) of and the character formula for Kac-Moody superalgebras, which is explained in a very general setting. Only elementary linear algebra and group theory are assumed. Also covered is modular property and asymptotic behavior of integrable characters of affine Lie algebras. The exposition is self-contained and includes examples. The book can be used in a graduate-level course on the topic.

New Classes of Neutrosophic Linear Algebras

New Classes of Neutrosophic Linear Algebras
Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
Total Pages: 288
Release: 2010-01-01
Genre: Mathematics
ISBN: 1599731169

In this book we introduce three types of neutrosophic linear algebras: neutrosophic set lineat algebra, neutrosophic semigroup linear algebra, and neutrosophic group linear algebra. These are generalizations of neutrosophic linear algebra. These new algebraic structures pave the way for applications in several fields like mathematical modeling.

Elementary Matrix Algebra

Elementary Matrix Algebra
Author: Franz E. Hohn
Publisher: Courier Corporation
Total Pages: 562
Release: 2013-02-19
Genre: Mathematics
ISBN: 0486143724

This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations — homogeneous or nonhomogeneous — and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology. Other subjects include the complete treatment of the structure of the solution space of a system of linear equations, the most commonly used properties of determinants, and linear operators and linear transformations of coordinates. Considerably more material than can be offered in a one-semester course appears here; this comprehensive volume by Franz E. Hohn, Professor of Mathematics at the University of Illinois for many years, provides instructors with a wide range of choices in order to meet differing interests and to accommodate students with varying backgrounds.

Nonlinear Systems and Their Remarkable Mathematical Structures

Nonlinear Systems and Their Remarkable Mathematical Structures
Author: Norbert Euler
Publisher: CRC Press
Total Pages: 510
Release: 2021-09-07
Genre: Mathematics
ISBN: 1000423263

The third volume in this sequence of books consists of a collection of contributions that aims to describe the recent progress in nonlinear differential equations and nonlinear dynamical systems (both continuous and discrete). Nonlinear Systems and Their Remarkable Mathematical Structures: Volume 3, Contributions from China just like the first two volumes, consists of contributions by world-leading experts in the subject of nonlinear systems, but in this instance only featuring contributions by leading Chinese scientists who also work in China (in some cases in collaboration with western scientists). Features Clearly illustrate the mathematical theories of nonlinear systems and its progress to both the non-expert and active researchers in this area . Suitable for graduate students in Mathematics, Applied Mathematics and some of the Engineering Sciences. Written in a careful pedagogical manner by those experts who have been involved in the research themselves, and each contribution is reasonably self-contained.

Solitons, Nonlinear Evolution Equations and Inverse Scattering

Solitons, Nonlinear Evolution Equations and Inverse Scattering
Author: Mark J. Ablowitz
Publisher: Cambridge University Press
Total Pages: 532
Release: 1991-12-12
Genre: Mathematics
ISBN: 0521387302

This book will be a valuable addition to the growing literature in the area and essential reading for all researchers in the field of soliton theory.