Big Data in Energy Economics

Big Data in Energy Economics
Author: Hui Liu
Publisher: Springer Nature
Total Pages: 275
Release: 2022-02-08
Genre: Business & Economics
ISBN: 9811689652

This book combines energy economics and big data modeling analysis in energy conversion and management and comprehensively introduces the relevant theories, key technologies, and application examples of the smart energy economy. With the help of time series big data modeling results, energy economy managers develop reasonable and feasible pricing mechanisms of electricity price and improve the absorption capacity of the power grid. In addition, they also carry out scientific power equipment scheduling and cost–benefit analysis according to the results of data mining, so as to avoid the loss caused by accidental damage of equipment. Energy users adjust their power consumption behavior through the modeling results provided and achieve the effect of energy saving and emission reduction while reasonably reducing the electricity expenditure. This book provides an important reference for professionals in related fields such as smart energy, smart economy, energy Internet, artificial intelligence, energy economics and policy.

Big Data for Twenty-First-Century Economic Statistics

Big Data for Twenty-First-Century Economic Statistics
Author: Katharine G. Abraham
Publisher: University of Chicago Press
Total Pages: 502
Release: 2022-03-11
Genre: Business & Economics
ISBN: 022680125X

Introduction.Big data for twenty-first-century economic statistics: the future is now /Katharine G. Abraham, Ron S. Jarmin, Brian C. Moyer, and Matthew D. Shapiro --Toward comprehensive use of big data in economic statistics.Reengineering key national economic indicators /Gabriel Ehrlich, John Haltiwanger, Ron S. Jarmin, David Johnson, and Matthew D. Shapiro ;Big data in the US consumer price index: experiences and plans /Crystal G. Konny, Brendan K. Williams, and David M. Friedman ;Improving retail trade data products using alternative data sources /Rebecca J. Hutchinson ;From transaction data to economic statistics: constructing real-time, high-frequency, geographic measures of consumer spending /Aditya Aladangady, Shifrah Aron-Dine, Wendy Dunn, Laura Feiveson, Paul Lengermann, and Claudia Sahm ;Improving the accuracy of economic measurement with multiple data sources: the case of payroll employment data /Tomaz Cajner, Leland D. Crane, Ryan A. Decker, Adrian Hamins-Puertolas, and Christopher Kurz --Uses of big data for classification.Transforming naturally occurring text data into economic statistics: the case of online job vacancy postings /Arthur Turrell, Bradley Speigner, Jyldyz Djumalieva, David Copple, and James Thurgood ;Automating response evaluation for franchising questions on the 2017 economic census /Joseph Staudt, Yifang Wei, Lisa Singh, Shawn Klimek, J. Bradford Jensen, and Andrew Baer ;Using public data to generate industrial classification codes /John Cuffe, Sudip Bhattacharjee, Ugochukwu Etudo, Justin C. Smith, Nevada Basdeo, Nathaniel Burbank, and Shawn R. Roberts --Uses of big data for sectoral measurement.Nowcasting the local economy: using Yelp data to measure economic activity /Edward L. Glaeser, Hyunjin Kim, and Michael Luca ;Unit values for import and export price indexes: a proof of concept /Don A. Fast and Susan E. Fleck ;Quantifying productivity growth in the delivery of important episodes of care within the Medicare program using insurance claims and administrative data /John A. Romley, Abe Dunn, Dana Goldman, and Neeraj Sood ;Valuing housing services in the era of big data: a user cost approach leveraging Zillow microdata /Marina Gindelsky, Jeremy G. Moulton, and Scott A. Wentland --Methodological challenges and advances.Off to the races: a comparison of machine learning and alternative data for predicting economic indicators /Jeffrey C. Chen, Abe Dunn, Kyle Hood, Alexander Driessen, and Andrea Batch ;A machine learning analysis of seasonal and cyclical sales in weekly scanner data /Rishab Guha and Serena Ng ;Estimating the benefits of new products /W. Erwin Diewert and Robert C. Feenstra.

Big Data Mining for Climate Change

Big Data Mining for Climate Change
Author: Zhihua Zhang
Publisher: Elsevier
Total Pages: 344
Release: 2019-11-20
Genre: Science
ISBN: 0128187034

Climate change mechanisms, impacts, risks, mitigation, adaption, and governance are widely recognized as the biggest, most interconnected problem facing humanity. Big Data Mining for Climate Change addresses one of the fundamental issues facing scientists of climate or the environment: how to manage the vast amount of information available and analyse it. The resulting integrated and interdisciplinary big data mining approaches are emerging, partially with the help of the United Nation's big data climate challenge, some of which are recommended widely as new approaches for climate change research. Big Data Mining for Climate Change delivers a rich understanding of climate-related big data techniques and highlights how to navigate huge amount of climate data and resources available using big data applications. It guides future directions and will boom big-data-driven researches on modeling, diagnosing and predicting climate change and mitigating related impacts. This book mainly focuses on climate network models, deep learning techniques for climate dynamics, automated feature extraction of climate variability, and sparsification of big climate data. It also includes a revelatory exploration of big-data-driven low-carbon economy and management. Its content provides cutting-edge knowledge for scientists and advanced students studying climate change from various disciplines, including atmospheric, oceanic and environmental sciences; geography, ecology, energy, economics, management, engineering, and public policy.

New Horizons for a Data-Driven Economy

New Horizons for a Data-Driven Economy
Author: José María Cavanillas
Publisher: Springer
Total Pages: 312
Release: 2016-04-04
Genre: Computers
ISBN: 3319215698

In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment.

Handbook of Big Data Research Methods

Handbook of Big Data Research Methods
Author: Shahriar Akter
Publisher: Edward Elgar Publishing
Total Pages: 335
Release: 2023-06-01
Genre: Business & Economics
ISBN: 1800888554

This state-of-the-art Handbook provides an overview of the role of big data analytics in various areas of business and commerce, including accounting, finance, marketing, human resources, operations management, fashion retailing, information systems, and social media. It provides innovative ways of overcoming the challenges of big data research and proposes new directions for further research using descriptive, diagnostic, predictive, and prescriptive analytics.

Data Analysis for Business, Economics, and Policy

Data Analysis for Business, Economics, and Policy
Author: Gábor Békés
Publisher: Cambridge University Press
Total Pages: 741
Release: 2021-05-06
Genre: Business & Economics
ISBN: 1108483011

A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data.

Technological Development and Impact on Economic and Environmental Sustainability

Technological Development and Impact on Economic and Environmental Sustainability
Author: Bayar, Yilmaz
Publisher: IGI Global
Total Pages: 352
Release: 2022-03-25
Genre: Business & Economics
ISBN: 1799896501

The globalized world has experienced significant improvements in production and consumption in a heterogeneous way since the industrial revolution. However, the considerable environmental degradation and energy wars resulting from the limited fossil energy sources brought the issue of sustainable development to the world agenda. Sustainable development has become one of the most discussed issues at country and international levels and requires further investigation to fully understand how we can move towards a more sustainable future. Technological Development and Impact on Economic and Environmental Sustainability explores the determinants of economic, social, and environmental sustainability from a multidisciplinary perspective in the globalized world, analyzes the impacts of applied sustainable policies, and considers the improvements in the Sustainable Development Goals. Covering topics such as economic growth and climate change, this reference work is ideal for researchers, academicians, scholars, practitioners, industry professionals, instructors, and students.

Big Data for Regional Science

Big Data for Regional Science
Author: Laurie A Schintler
Publisher: Routledge
Total Pages: 350
Release: 2017-08-07
Genre: Business & Economics
ISBN: 1351983261

Recent technological advancements and other related factors and trends are contributing to the production of an astoundingly large and rapidly accelerating collection of data, or ‘Big Data’. This data now allows us to examine urban and regional phenomena in ways that were previously not possible. Despite the tremendous potential of big data for regional science, its use and application in this context is fraught with issues and challenges. This book brings together leading contributors to present an interdisciplinary, agenda-setting and action-oriented platform for research and practice in the urban and regional community. This book provides a comprehensive, multidisciplinary and cutting-edge perspective on big data for regional science. Chapters contain a collection of research notes contributed by experts from all over the world with a wide array of disciplinary backgrounds. The content is organized along four themes: sources of big data; integration, processing and management of big data; analytics for big data; and, higher level policy and programmatic considerations. As well as concisely and comprehensively synthesising work done to date, the book also considers future challenges and prospects for the use of big data in regional science. Big Data for Regional Science provides a seminal contribution to the field of regional science and will appeal to a broad audience, including those at all levels of academia, industry, and government.