Big Data Analytics Techniques For Market Intelligence
Download Big Data Analytics Techniques For Market Intelligence full books in PDF, epub, and Kindle. Read online free Big Data Analytics Techniques For Market Intelligence ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Darwish, Dina |
Publisher | : IGI Global |
Total Pages | : 536 |
Release | : 2024-01-04 |
Genre | : Computers |
ISBN | : |
The ever-expanding realm of Big Data poses a formidable challenge for academic scholars and professionals due to the sheer magnitude and diversity of data types, along with the continuous influx of information from various sources. Extracting valuable insights from this vast and complex dataset is crucial for organizations to uncover market intelligence and make informed decisions. However, without the proper guidance and understanding of Big Data analytics techniques and methodologies, scholars may struggle to navigate this landscape and maximize the potential benefits of their research. In response to this pressing need, Professor Dina Darwish presents Big Data Analytics Techniques for Market Intelligence, a groundbreaking book that addresses the specific challenges faced by scholars and professionals in the field. Through a comprehensive exploration of various techniques and methodologies, this book offers a solution to the hurdles encountered in extracting meaningful information from Big Data. Covering the entire lifecycle of Big Data analytics, including preprocessing, analysis, visualization, and utilization of results, the book equips readers with the knowledge and tools necessary to unlock the power of Big Data and generate valuable market intelligence. With real-world case studies and a focus on practical guidance, scholars and professionals can effectively leverage Big Data analytics to drive strategic decision-making and stay at the forefront of this rapidly evolving field.
Author | : Trivedi, Shrawan Kumar |
Publisher | : IGI Global |
Total Pages | : 465 |
Release | : 2017-02-14 |
Genre | : Computers |
ISBN | : 1522520325 |
The development of business intelligence has enhanced the visualization of data to inform and facilitate business management and strategizing. By implementing effective data-driven techniques, this allows for advance reporting tools to cater to company-specific issues and challenges. The Handbook of Research on Advanced Data Mining Techniques and Applications for Business Intelligence is a key resource on the latest advancements in business applications and the use of mining software solutions to achieve optimal decision-making and risk management results. Highlighting innovative studies on data warehousing, business activity monitoring, and text mining, this publication is an ideal reference source for research scholars, management faculty, and practitioners.
Author | : Singh, Amandeep |
Publisher | : IGI Global |
Total Pages | : 310 |
Release | : 2021-06-18 |
Genre | : Business & Economics |
ISBN | : 1799872335 |
The availability of big data, low-cost commodity hardware, and new information management and analytic software have produced a unique moment in the history of data analysis. The convergence of these trends means that we have the capabilities required to analyze astonishing data sets quickly and cost-effectively for the first time in history. They represent a genuine leap forward and a clear opportunity to realize enormous gains in terms of efficiency, productivity, revenue, and profitability especially in digital marketing. Data plays a huge role in understanding valuable insights about target demographics and customer preferences. From every interaction with technology, regardless of whether it is active or passive, we are creating new data that can describe us. If analyzed correctly, these data points can explain a lot about our behavior, personalities, and life events. Companies can leverage these insights for product improvements, business strategy, and marketing campaigns to cater to the target customers. Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing aids understanding of big data in terms of digital marketing for meaningful analysis of information that can improve marketing efforts and strategies using the latest digital techniques. The chapters cover a wide array of essential marketing topics and techniques, including search engine marketing, consumer behavior, social media marketing, online advertising, and how they interact with big data. This book is essential for professionals and researchers working in the field of analytics, data, and digital marketing, along with marketers, advertisers, brand managers, social media specialists, managers, sales professionals, practitioners, researchers, academicians, and students looking for the latest information on how big data is being used in digital marketing strategies.
Author | : Information Resources Management Association |
Publisher | : Engineering Science Reference |
Total Pages | : 0 |
Release | : 2022 |
Genre | : Big data |
ISBN | : 9781668436622 |
Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians.
Author | : Sun, Zhaohao |
Publisher | : IGI Global |
Total Pages | : 357 |
Release | : 2019-02-22 |
Genre | : Computers |
ISBN | : 1522572783 |
Big data, analytics, and artificial intelligence are revolutionizing work, management, and lifestyles and are becoming disruptive technologies for healthcare, e-commerce, and web services. However, many fundamental, technological, and managerial issues for developing and applying intelligent big data analytics in these fields have yet to be addressed. Managerial Perspectives on Intelligent Big Data Analytics is a collection of innovative research that discusses the integration and application of artificial intelligence, business intelligence, digital transformation, and intelligent big data analytics from a perspective of computing, service, and management. While highlighting topics including e-commerce, machine learning, and fuzzy logic, this book is ideally designed for students, government officials, data scientists, managers, consultants, analysts, IT specialists, academicians, researchers, and industry professionals in fields that include big data, artificial intelligence, computing, and commerce.
Author | : Galit Shmueli |
Publisher | : John Wiley & Sons |
Total Pages | : 608 |
Release | : 2019-10-14 |
Genre | : Mathematics |
ISBN | : 111954985X |
Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R
Author | : Jay Liebowitz |
Publisher | : CRC Press |
Total Pages | : 304 |
Release | : 2016-04-19 |
Genre | : Business & Economics |
ISBN | : 1466565799 |
"The chapters in this volume offer useful case studies, technical roadmaps, lessons learned, and a few prescriptions todo this, avoid that.'"-From the Foreword by Joe LaCugna, Ph.D., Enterprise Analytics and Business Intelligence, Starbucks Coffee CompanyWith the growing barrage of "big data," it becomes vitally important for organizations to mak
Author | : David Loshin |
Publisher | : Elsevier |
Total Pages | : 143 |
Release | : 2013-08-23 |
Genre | : Computers |
ISBN | : 0124186645 |
Big Data Analytics will assist managers in providing an overview of the drivers for introducing big data technology into the organization and for understanding the types of business problems best suited to big data analytics solutions, understanding the value drivers and benefits, strategic planning, developing a pilot, and eventually planning to integrate back into production within the enterprise. - Guides the reader in assessing the opportunities and value proposition - Overview of big data hardware and software architectures - Presents a variety of technologies and how they fit into the big data ecosystem
Author | : Vijayan Sugumaran |
Publisher | : CRC Press |
Total Pages | : 362 |
Release | : 2017-06-26 |
Genre | : Computers |
ISBN | : 1351720252 |
There are a number of books on computational intelligence (CI), but they tend to cover a broad range of CI paradigms and algorithms rather than provide an in-depth exploration in learning and adaptive mechanisms. This book sets its focus on CI based architectures, modeling, case studies and applications in big data analytics, and business intelligence. The intended audiences of this book are scientists, professionals, researchers, and academicians who deal with the new challenges and advances in the specific areas mentioned above. Designers and developers of applications in these areas can learn from other experts and colleagues through this book.
Author | : Nataraj Dasgupta |
Publisher | : Packt Publishing Ltd |
Total Pages | : 402 |
Release | : 2018-01-15 |
Genre | : Computers |
ISBN | : 1783554401 |
Get command of your organizational Big Data using the power of data science and analytics Key Features A perfect companion to boost your Big Data storing, processing, analyzing skills to help you take informed business decisions Work with the best tools such as Apache Hadoop, R, Python, and Spark for NoSQL platforms to perform massive online analyses Get expert tips on statistical inference, machine learning, mathematical modeling, and data visualization for Big Data Book Description Big Data analytics relates to the strategies used by organizations to collect, organize and analyze large amounts of data to uncover valuable business insights that otherwise cannot be analyzed through traditional systems. Crafting an enterprise-scale cost-efficient Big Data and machine learning solution to uncover insights and value from your organization's data is a challenge. Today, with hundreds of new Big Data systems, machine learning packages and BI Tools, selecting the right combination of technologies is an even greater challenge. This book will help you do that. With the help of this guide, you will be able to bridge the gap between the theoretical world of technology with the practical ground reality of building corporate Big Data and data science platforms. You will get hands-on exposure to Hadoop and Spark, build machine learning dashboards using R and R Shiny, create web-based apps using NoSQL databases such as MongoDB and even learn how to write R code for neural networks. By the end of the book, you will have a very clear and concrete understanding of what Big Data analytics means, how it drives revenues for organizations, and how you can develop your own Big Data analytics solution using different tools and methods articulated in this book. What you will learn - Get a 360-degree view into the world of Big Data, data science and machine learning - Broad range of technical and business Big Data analytics topics that caters to the interests of the technical experts as well as corporate IT executives - Get hands-on experience with industry-standard Big Data and machine learning tools such as Hadoop, Spark, MongoDB, KDB+ and R - Create production-grade machine learning BI Dashboards using R and R Shiny with step-by-step instructions - Learn how to combine open-source Big Data, machine learning and BI Tools to create low-cost business analytics applications - Understand corporate strategies for successful Big Data and data science projects - Go beyond general-purpose analytics to develop cutting-edge Big Data applications using emerging technologies Who this book is for The book is intended for existing and aspiring Big Data professionals who wish to become the go-to person in their organization when it comes to Big Data architecture, analytics, and governance. While no prior knowledge of Big Data or related technologies is assumed, it will be helpful to have some programming experience.