Beyond The Triangle Brownian Motion Ito Calculus And Fokker Planck Equation Fractional Generalizations
Download Beyond The Triangle Brownian Motion Ito Calculus And Fokker Planck Equation Fractional Generalizations full books in PDF, epub, and Kindle. Read online free Beyond The Triangle Brownian Motion Ito Calculus And Fokker Planck Equation Fractional Generalizations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Sabir Umarov |
Publisher | : World Scientific Publishing Company |
Total Pages | : 0 |
Release | : 2018 |
Genre | : Brownian motion processes |
ISBN | : 9789813230910 |
The book is devoted to the fundamental relationship between three objects: a stochastic process, stochastic differential equations driven by that process and their associated Fokker-Planck-Kolmogorov equations. This book discusses wide fractional generalizations of this fundamental triple relationship, where the driving process represents a time-changed stochastic process; the Fokker-Planck-Kolmogorov equation involves time-fractional order derivatives and spatial pseudo-differential operators; and the associated stochastic differential equation describes the stochastic behavior of the solution process. It contains recent results obtained in this direction. This book is important since the latest developments in the field, including the role of driving processes and their scaling limits, the forms of corresponding stochastic differential equations, and associated FPK equations, are systematically presented. Examples and important applications to various scientific, engineering, and economics problems make the book attractive for all interested researchers, educators, and graduate students.
Author | : Sabir Umarov |
Publisher | : |
Total Pages | : 192 |
Release | : 2017 |
Genre | : MATHEMATICS |
ISBN | : 9789813230927 |
Author | : Sabir Umarov |
Publisher | : World Scientific |
Total Pages | : 192 |
Release | : 2018-02-13 |
Genre | : Mathematics |
ISBN | : 9813230991 |
The book is devoted to the fundamental relationship between three objects: a stochastic process, stochastic differential equations driven by that process and their associated Fokker-Planck-Kolmogorov equations. This book discusses wide fractional generalizations of this fundamental triple relationship, where the driving process represents a time-changed stochastic process; the Fokker-Planck-Kolmogorov equation involves time-fractional order derivatives and spatial pseudo-differential operators; and the associated stochastic differential equation describes the stochastic behavior of the solution process. It contains recent results obtained in this direction.This book is important since the latest developments in the field, including the role of driving processes and their scaling limits, the forms of corresponding stochastic differential equations, and associated FPK equations, are systematically presented. Examples and important applications to various scientific, engineering, and economics problems make the book attractive for all interested researchers, educators, and graduate students.
Author | : Sabir Umarov |
Publisher | : World Scientific |
Total Pages | : 336 |
Release | : 2022-03-03 |
Genre | : Science |
ISBN | : 9811245177 |
The book is devoted to the mathematical foundations of nonextensive statistical mechanics. This is the first book containing the systematic presentation of the mathematical theory and concepts related to nonextensive statistical mechanics, a current generalization of Boltzmann-Gibbs statistical mechanics introduced in 1988 by one of the authors and based on a nonadditive entropic functional extending the usual Boltzmann-Gibbs-von Neumann-Shannon entropy. Main mathematical tools like the q-exponential function, q-Gaussian distribution, q-Fourier transform, q-central limit theorems, and other related objects are discussed rigorously with detailed mathematical rational. The book also contains recent results obtained in this direction and challenging open problems. Each chapter is accompanied with additional useful notes including the history of development and related bibliographies for further reading.
Author | : Anatoly Kochubei |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 490 |
Release | : 2019-02-19 |
Genre | : Mathematics |
ISBN | : 3110571625 |
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This first volume collects authoritative chapters covering the mathematical theory of fractional calculus, including fractional-order operators, integral transforms and equations, special functions, calculus of variations, and probabilistic and other aspects.
Author | : Jacek Banasiak |
Publisher | : Springer Nature |
Total Pages | : 446 |
Release | : 2020-06-12 |
Genre | : Mathematics |
ISBN | : 3030460797 |
This book features selected and peer-reviewed lectures presented at the 3rd Semigroups of Operators: Theory and Applications Conference, held in Kazimierz Dolny, Poland, in October 2018 to mark the 85th birthday of Jan Kisyński. Held every five years, the conference offers a forum for mathematicians using semigroup theory to discover what is happening outside their particular field of research and helps establish new links between various sub-disciplines of semigroup theory, stochastic processes, differential equations and the applied fields. The book is intended for researchers, postgraduate and senior students working in operator theory, partial differential equations, probability and stochastic processes, analytical methods in biology and other natural sciences, optimisation and optimal control. The theory of semigroups of operators is a well-developed branch of functional analysis. Its foundations were laid at the beginning of the 20th century, while Hille and Yosida’s fundamental generation theorem dates back to the forties. The theory was originally designed as a universal language for partial differential equations and stochastic processes but, at the same time, it started to become an independent branch of operator theory. Today, it still has the same distinctive character: it develops rapidly by posing new ‘internal’ questions and, in answering them, discovering new methods that can be used in applications. On the other hand, it is being influenced by questions from PDE’s and stochastic processes as well as from applied sciences such as mathematical biology and optimal control and, as a result, it continually gathers new momentum. However, many results, both from semigroup theory itself and the applied sciences, are phrased in discipline-specific languages and are hardly known to the broader community.
Author | : Walter Lacarbonara |
Publisher | : Springer Nature |
Total Pages | : 598 |
Release | : 2022-03-01 |
Genre | : Technology & Engineering |
ISBN | : 3030811700 |
This third of three volumes includes papers from the second series of NODYCON, which was held virtually in February of 2021. The conference papers reflect a broad coverage of topics in nonlinear dynamics, ranging from traditional topics from established streams of research to those from relatively unexplored and emerging venues of research. These include · Complex dynamics of COVID-19: modeling, prediction and control · Nonlinear phenomena in bio-systems and eco-systems · Energy harvesting · MEMS/NEMS · Multifunctional structures, materials and metamaterials · Nonlinear waves · Chaotic systems, stochasticity, and uncertainty
Author | : Simo Särkkä |
Publisher | : Cambridge University Press |
Total Pages | : 327 |
Release | : 2019-05-02 |
Genre | : Business & Economics |
ISBN | : 1316510085 |
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Author | : Fima C. Klebaner |
Publisher | : Imperial College Press |
Total Pages | : 431 |
Release | : 2005 |
Genre | : Mathematics |
ISBN | : 1860945554 |
This book presents a concise treatment of stochastic calculus and its applications. It gives a simple but rigorous treatment of the subject including a range of advanced topics, it is useful for practitioners who use advanced theoretical results. It covers advanced applications, such as models in mathematical finance, biology and engineering.Self-contained and unified in presentation, the book contains many solved examples and exercises. It may be used as a textbook by advanced undergraduates and graduate students in stochastic calculus and financial mathematics. It is also suitable for practitioners who wish to gain an understanding or working knowledge of the subject. For mathematicians, this book could be a first text on stochastic calculus; it is good companion to more advanced texts by a way of examples and exercises. For people from other fields, it provides a way to gain a working knowledge of stochastic calculus. It shows all readers the applications of stochastic calculus methods and takes readers to the technical level required in research and sophisticated modelling.This second edition contains a new chapter on bonds, interest rates and their options. New materials include more worked out examples in all chapters, best estimators, more results on change of time, change of measure, random measures, new results on exotic options, FX options, stochastic and implied volatility, models of the age-dependent branching process and the stochastic Lotka-Volterra model in biology, non-linear filtering in engineering and five new figures.Instructors can obtain slides of the text from the author.
Author | : Don S. Lemons |
Publisher | : Johns Hopkins University Press+ORM |
Total Pages | : 165 |
Release | : 2003-04-29 |
Genre | : Science |
ISBN | : 0801876389 |
This “lucid, masterfully written introduction to an often difficult subject . . . belongs on the bookshelf of every student of statistical physics” (Dr. Brian J. Albright, Applied Physics Division, Los Alamos National Laboratory). This book provides an accessible introduction to stochastic processes in physics and describes the basic mathematical tools of the trade: probability, random walks, and Wiener and Ornstein-Uhlenbeck processes. With an emphasis on applications, it includes end-of-chapter problems. Physicist and author Don S. Lemons builds on Paul Langevin’s seminal 1908 paper “On the Theory of Brownian Motion” and its explanations of classical uncertainty in natural phenomena. Following Langevin’s example, Lemons applies Newton’s second law to a “Brownian particle on which the total force included a random component.” This method builds on Newtonian dynamics and provides an accessible explanation to anyone approaching the subject for the first time. This volume contains the complete text of Paul Langevin’s “On the Theory of Brownian Motion,” translated by Anthony Gythiel.