Belief Conditioning Rules

Belief Conditioning Rules
Author: Florentin Smarandache
Publisher: Infinite Study
Total Pages: 27
Release:
Genre:
ISBN:

In this paper we propose a new family of Belief Conditioning Rules (BCR) for belief revision. These rules are not directly related with the fusion of several sources of evidence but with the revision of a belief assignment available at a given time according to the new truth (i.e. conditioning constraint) one has about the space of solutions of the problem.

Belief Change

Belief Change
Author: Dov M. Gabbay
Publisher: Springer Science & Business Media
Total Pages: 466
Release: 1998-10-31
Genre: Mathematics
ISBN: 0792351622

Belief change is an emerging field of artificial intelligence and information science dedicated to the dynamics of information and the present book provides a state-of-the-art picture of its formal foundations. It deals with the addition, deletion and combination of pieces of information and, more generally, with the revision, updating and fusion of knowledge bases. The book offers an extensive coverage of, and seeks to reconcile, two traditions in the kinematics of belief that often ignore each other - the symbolic and the numerical (often probabilistic) approaches. Moreover, the work encompasses both revision and fusion problems, even though these two are also commonly investigated by different communities. Finally, the book presents the numerical view of belief change, beyond the probabilistic framework, covering such approaches as possibility theory, belief functions and convex gambles. The work thus presents a unified view of belief change operators, drawing from a widely scattered literature embracing philosophical logic, artificial intelligence, uncertainty modelling and database systems. The material is a clearly organised guide to the literature on the dynamics of epistemic states, knowledge bases and uncertain information, suitable for scholars and graduate students familiar with applied logic, knowledge representation and uncertain reasoning.

Classic Works of the Dempster-Shafer Theory of Belief Functions

Classic Works of the Dempster-Shafer Theory of Belief Functions
Author: Ronald R. Yager
Publisher: Springer
Total Pages: 813
Release: 2008-01-22
Genre: Technology & Engineering
ISBN: 354044792X

This is a collection of classic research papers on the Dempster-Shafer theory of belief functions. The book is the authoritative reference in the field of evidential reasoning and an important archival reference in a wide range of areas including uncertainty reasoning in artificial intelligence and decision making in economics, engineering, and management. The book includes a foreword reflecting the development of the theory in the last forty years.

Advances and Applications of DSmT for Information Fusion, Vol. IV

Advances and Applications of DSmT for Information Fusion, Vol. IV
Author: Florentin Smarandache, Jean Dezert
Publisher: Infinite Study
Total Pages: 506
Release: 2015-03-01
Genre:
ISBN: 1599733242

The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.gallup.unm.edu/DSmT-book3.pdf) ininternational conferences, seminars, workshops and journals.

On the Behavior of Dempster’s Rule of Combination and the Foundations of Dempster-Shafer Theory

On the Behavior of Dempster’s Rule of Combination and the Foundations of Dempster-Shafer Theory
Author: Albena Tchamova
Publisher: Infinite Study
Total Pages: 6
Release: 2012-04-16
Genre: Mathematics
ISBN:

On the base of simple emblematic example we analyze and explain the inconsistent and inadequate behavior of Dempster-Shafer’s rule of combination as a valid method to combine sources of evidences. We identify the cause and the effect of the dictatorial power behavior of this rule and of its impossibility to manage the conflicts between the sources. For a comparison purpose, we present the respective solution obtained by the more efficient PCR5 fusion rule proposed originally in Dezert-Smarandache Theory framework. Finally, we identify and prove the inherent contradiction of Dempster-Shafer Theory foundations.

A Mathematical Theory of Evidence

A Mathematical Theory of Evidence
Author: Glenn Shafer
Publisher: Princeton University Press
Total Pages: 313
Release: 1976-04-21
Genre: Mathematics
ISBN: 069110042X

Both in science and in practical affairs we reason by combining facts only inconclusively supported by evidence. Building on an abstract understanding of this process of combination, this book constructs a new theory of epistemic probability. The theory draws on the work of A. P. Dempster but diverges from Depster's viewpoint by identifying his "lower probabilities" as epistemic probabilities and taking his rule for combining "upper and lower probabilities" as fundamental. The book opens with a critique of the well-known Bayesian theory of epistemic probability. It then proceeds to develop an alternative to the additive set functions and the rule of conditioning of the Bayesian theory: set functions that need only be what Choquet called "monotone of order of infinity." and Dempster's rule for combining such set functions. This rule, together with the idea of "weights of evidence," leads to both an extensive new theory and a better understanding of the Bayesian theory. The book concludes with a brief treatment of statistical inference and a discussion of the limitations of epistemic probability. Appendices contain mathematical proofs, which are relatively elementary and seldom depend on mathematics more advanced that the binomial theorem.

Symbolic and Quantitative Approaches to Reasoning with Uncertainty

Symbolic and Quantitative Approaches to Reasoning with Uncertainty
Author: Weiru Liu
Publisher: Springer Science & Business Media
Total Pages: 775
Release: 2011-06-24
Genre: Computers
ISBN: 3642221513

This book constitutes the refereed proceedings of the 11th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2011, held in Belfast, UK, in June/July 2011. The 60 revised full papers presented together with 3 invited talks were carefully reviewed and selected from 108 submissions. The papers are organized in topical sections on argumentation; Bayesian networks and causal networks; belief functions; belief revision and inconsistency handling; classification and clustering; default reasoning and logics for reasoning under uncertainty; foundations of reasoning and decision making under uncertainty; fuzzy sets and fuzzy logic; implementation and applications of uncertain systems; possibility theory and possibilistic logic; and uncertainty in databases.

SCAI '97

SCAI '97
Author: G. Grahne
Publisher:
Total Pages: 316
Release: 1997
Genre: Computers
ISBN:

Advances and Applications of DSmT for Information Fusion (Collected Works. Volume 5)

Advances and Applications of DSmT for Information Fusion (Collected Works. Volume 5)
Author: Florentin Smarandache
Publisher: Infinite Study
Total Pages: 932
Release: 2023-12-27
Genre: Biography & Autobiography
ISBN:

This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 (available at fs.unm.edu/DSmT-book4.pdf or www.onera.fr/sites/default/files/297/2015-DSmT-Book4.pdf) in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well. We want to thank all the contributors of this fifth volume for their research works and their interests in the development of DSmT, and the belief functions. We are grateful as well to other colleagues for encouraging us to edit this fifth volume, and for sharing with us several ideas and for their questions and comments on DSmT through the years. We thank the International Society of Information Fusion (www.isif.org) for diffusing main research works related to information fusion (including DSmT) in the international fusion conferences series over the years. Florentin Smarandache is grateful to The University of New Mexico, U.S.A., that many times partially sponsored him to attend international conferences, workshops and seminars on Information Fusion. Jean Dezert is grateful to the Department of Information Processing and Systems (DTIS) of the French Aerospace Lab (Office National d’E´tudes et de Recherches Ae´rospatiales), Palaiseau, France, for encouraging him to carry on this research and for its financial support. Albena Tchamova is first of all grateful to Dr. Jean Dezert for the opportunity to be involved during more than 20 years to follow and share his smart and beautiful visions and ideas in the development of the powerful Dezert-Smarandache Theory for data fusion. She is also grateful to the Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, for sponsoring her to attend international conferences on Information Fusion.