Bayesian Networks for Reliability Engineering

Bayesian Networks for Reliability Engineering
Author: Baoping Cai
Publisher: Springer
Total Pages: 259
Release: 2019-02-28
Genre: Technology & Engineering
ISBN: 9811365164

This book presents a bibliographical review of the use of Bayesian networks in reliability over the last decade. Bayesian network (BN) is considered to be one of the most powerful models in probabilistic knowledge representation and inference, and it is increasingly used in the field of reliability. After focusing on the engineering systems, the book subsequently discusses twelve important issues in the BN-based reliability methodologies, such as BN structure modeling, BN parameter modeling, BN inference, validation, and verification. As such, it is a valuable resource for researchers and practitioners in the field of reliability engineering.

Bayesian Reliability

Bayesian Reliability
Author: Michael S. Hamada
Publisher: Springer Science & Business Media
Total Pages: 445
Release: 2008-08-15
Genre: Mathematics
ISBN: 0387779507

Bayesian Reliability presents modern methods and techniques for analyzing reliability data from a Bayesian perspective. The adoption and application of Bayesian methods in virtually all branches of science and engineering have significantly increased over the past few decades. This increase is largely due to advances in simulation-based computational tools for implementing Bayesian methods. The authors extensively use such tools throughout this book, focusing on assessing the reliability of components and systems with particular attention to hierarchical models and models incorporating explanatory variables. Such models include failure time regression models, accelerated testing models, and degradation models. The authors pay special attention to Bayesian goodness-of-fit testing, model validation, reliability test design, and assurance test planning. Throughout the book, the authors use Markov chain Monte Carlo (MCMC) algorithms for implementing Bayesian analyses -- algorithms that make the Bayesian approach to reliability computationally feasible and conceptually straightforward. This book is primarily a reference collection of modern Bayesian methods in reliability for use by reliability practitioners. There are more than 70 illustrative examples, most of which utilize real-world data. This book can also be used as a textbook for a course in reliability and contains more than 160 exercises. Noteworthy highlights of the book include Bayesian approaches for the following: Goodness-of-fit and model selection methods Hierarchical models for reliability estimation Fault tree analysis methodology that supports data acquisition at all levels in the tree Bayesian networks in reliability analysis Analysis of failure count and failure time data collected from repairable systems, and the assessment of various related performance criteria Analysis of nondestructive and destructive degradation data Optimal design of reliability experiments Hierarchical reliability assurance testing

Advances in System Reliability Engineering

Advances in System Reliability Engineering
Author: Mangey Ram
Publisher: Academic Press
Total Pages: 320
Release: 2018-11-24
Genre: Technology & Engineering
ISBN: 0128162724

Recent Advances in System Reliability Engineering describes and evaluates the latest tools, techniques, strategies, and methods in this topic for a variety of applications. Special emphasis is put on simulation and modelling technology which is growing in influence in industry, and presents challenges as well as opportunities to reliability and systems engineers. Several manufacturing engineering applications are addressed, making this a particularly valuable reference for readers in that sector. - Contains comprehensive discussions on state-of-the-art tools, techniques, and strategies from industry - Connects the latest academic research to applications in industry including system reliability, safety assessment, and preventive maintenance - Gives an in-depth analysis of the benefits and applications of modelling and simulation to reliability

Reliability and Availability Engineering

Reliability and Availability Engineering
Author: Kishor S. Trivedi
Publisher: Cambridge University Press
Total Pages: 729
Release: 2017-08-03
Genre: Computers
ISBN: 1107099501

Learn about the techniques used for evaluating the reliability and availability of engineered systems with this comprehensive guide.

System and Bayesian Reliability

System and Bayesian Reliability
Author: Yu Hayakawa
Publisher: World Scientific
Total Pages: 444
Release: 2001
Genre: Technology & Engineering
ISBN: 9789812799548

This volume is a collection of articles on reliability systems and Bayesian reliability analysis. Written by reputable researchers, the articles are self-contained and are linked with literature reviews and new research ideas. The book is dedicated to Emeritus Professor Richard E Barlow, who is well known for his pioneering research on reliability theory and Bayesian reliability analysis. Contents: System Reliability Analysis: On Regular Reliability Models (J-C Chang et al.); Bounding System Reliability (J N Hagstrom & S M Ross); Large Excesses for Finite-State Markov Chains (D Blackwell); Ageing Properties: Nonmonotonic Failure Rates and Mean Residual Life Functions (R C Gupta); The Failure Rate and the Mean Residual Lifetime of Mixtures (M S Finkelstein); On Some Discrete Notions of Aging (C Bracquemond et al.); Bayesian Analysis: On the Practical Implementation of the Bayesian Paradigm in Reliability and Risk Analysis (T Aven); A Weibull Wearout Test: Full Bayesian Approach (T Z Irony et al.); Bayesian Nonparametric Estimation of a Monotone Hazard Rate (M-W Ho & A Y Lo); and other papers. Readership: Students, academics, researchers and professionals in industrial engineering, probability and statistics, and applied mathematics.

Risk Assessment and Decision Analysis with Bayesian Networks

Risk Assessment and Decision Analysis with Bayesian Networks
Author: Norman Fenton
Publisher: CRC Press
Total Pages: 527
Release: 2012-11-07
Genre: Business & Economics
ISBN: 1439809100

Although many Bayesian Network (BN) applications are now in everyday use, BNs have not yet achieved mainstream penetration. Focusing on practical real-world problem solving and model building, as opposed to algorithms and theory, Risk Assessment and Decision Analysis with Bayesian Networks explains how to incorporate knowledge with data to develop and use (Bayesian) causal models of risk that provide powerful insights and better decision making. Provides all tools necessary to build and run realistic Bayesian network models Supplies extensive example models based on real risk assessment problems in a wide range of application domains provided; for example, finance, safety, systems reliability, law, and more Introduces all necessary mathematics, probability, and statistics as needed The book first establishes the basics of probability, risk, and building and using BN models, then goes into the detailed applications. The underlying BN algorithms appear in appendices rather than the main text since there is no need to understand them to build and use BN models. Keeping the body of the text free of intimidating mathematics, the book provides pragmatic advice about model building to ensure models are built efficiently. A dedicated website, www.BayesianRisk.com, contains executable versions of all of the models described, exercises and worked solutions for all chapters, PowerPoint slides, numerous other resources, and a free downloadable copy of the AgenaRisk software.

Risk Assessment and Decision Analysis with Bayesian Networks

Risk Assessment and Decision Analysis with Bayesian Networks
Author: Norman Fenton
Publisher: CRC Press
Total Pages: 661
Release: 2018-09-03
Genre: Mathematics
ISBN: 1351978977

Since the first edition of this book published, Bayesian networks have become even more important for applications in a vast array of fields. This second edition includes new material on influence diagrams, learning from data, value of information, cybersecurity, debunking bad statistics, and much more. Focusing on practical real-world problem-solving and model building, as opposed to algorithms and theory, it explains how to incorporate knowledge with data to develop and use (Bayesian) causal models of risk that provide more powerful insights and better decision making than is possible from purely data-driven solutions. Features Provides all tools necessary to build and run realistic Bayesian network models Supplies extensive example models based on real risk assessment problems in a wide range of application domains provided; for example, finance, safety, systems reliability, law, forensics, cybersecurity and more Introduces all necessary mathematics, probability, and statistics as needed Establishes the basics of probability, risk, and building and using Bayesian network models, before going into the detailed applications A dedicated website contains exercises and worked solutions for all chapters along with numerous other resources. The AgenaRisk software contains a model library with executable versions of all of the models in the book. Lecture slides are freely available to accredited academic teachers adopting the book on their course.

Bayesian Networks

Bayesian Networks
Author: Olivier Pourret
Publisher: John Wiley & Sons
Total Pages: 446
Release: 2008-04-30
Genre: Mathematics
ISBN: 9780470994542

Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis. This book provides a general introduction to Bayesian networks, defining and illustrating the basic concepts with pedagogical examples and twenty real-life case studies drawn from a range of fields including medicine, computing, natural sciences and engineering. Designed to help analysts, engineers, scientists and professionals taking part in complex decision processes to successfully implement Bayesian networks, this book equips readers with proven methods to generate, calibrate, evaluate and validate Bayesian networks. The book: Provides the tools to overcome common practical challenges such as the treatment of missing input data, interaction with experts and decision makers, determination of the optimal granularity and size of the model. Highlights the strengths of Bayesian networks whilst also presenting a discussion of their limitations. Compares Bayesian networks with other modelling techniques such as neural networks, fuzzy logic and fault trees. Describes, for ease of comparison, the main features of the major Bayesian network software packages: Netica, Hugin, Elvira and Discoverer, from the point of view of the user. Offers a historical perspective on the subject and analyses future directions for research. Written by leading experts with practical experience of applying Bayesian networks in finance, banking, medicine, robotics, civil engineering, geology, geography, genetics, forensic science, ecology, and industry, the book has much to offer both practitioners and researchers involved in statistical analysis or modelling in any of these fields.

Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis

Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis
Author: Uffe B. Kjærulff
Publisher: Springer Science & Business Media
Total Pages: 388
Release: 2012-11-30
Genre: Computers
ISBN: 1461451043

Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined on the basis of numerous courses that the authors have held for practitioners worldwide.

Multi-state System Reliability: Assessment, Optimization And Applications

Multi-state System Reliability: Assessment, Optimization And Applications
Author: Gregory Levitin
Publisher: World Scientific Publishing Company
Total Pages: 375
Release: 2003-03-12
Genre: Mathematics
ISBN: 981310614X

Most books on reliability theory are devoted to traditional binary reliability models allowing for only two possible states for a system and its components: perfect functionality and complete failure. However, many real-world systems are composed of multi-state components, which have different performance levels and several failure modes with various effects on the entire system performance (degradation). Such systems are called Multi-State Systems (MSS). The examples of MSS are power systems where the component performance is characterized by the generating capacity, computer systems where the component performance is characterized by the data processing speed, communication systems, etc.This book is the first to be devoted to Multi-State System (MSS) reliability analysis and optimization. It provides a historical overview of the field, presents basic concepts of MSS, defines MSS reliability measures, and systematically describes the tools for MSS reliability assessment and optimization. Basic methods for MSS reliability assessment, such as a Boolean methods extension, basic random process methods (both Markov and semi-Markov) and universal generating function models, are systematically studied. A universal genetic algorithm optimization technique and all details of its application are described. All the methods are illustrated by numerical examples. The book also contains many examples of application of reliability assessment and optimization methods to real engineering problems.The aim of this book is to give a comprehensive, up-to-date presentation of MSS reliability theory based on modern advances in this field and provide a theoretical summary and examples of engineering applications to a variety of technical problems. From this point of view the book bridges the gap between theoretical advances and practical reliability engineering.