Bayesian Inference in Dynamic Econometric Models

Bayesian Inference in Dynamic Econometric Models
Author: Luc Bauwens
Publisher: OUP Oxford
Total Pages: 370
Release: 2000-01-06
Genre: Business & Economics
ISBN: 0191588466

This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers a broad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It contains also an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods.

Nonlinear Econometric Modeling in Time Series

Nonlinear Econometric Modeling in Time Series
Author: William A. Barnett
Publisher: Cambridge University Press
Total Pages: 248
Release: 2000-05-22
Genre: Business & Economics
ISBN: 9780521594240

This book presents some of the more recent developments in nonlinear time series, including Bayesian analysis and cointegration tests.

Periodic Time Series Models

Periodic Time Series Models
Author: Philip Hans Franses
Publisher: OUP Oxford
Total Pages: 166
Release: 2004-03-25
Genre: Business & Economics
ISBN: 0191529265

This book considers periodic time series models for seasonal data, characterized by parameters that differ across the seasons, and focuses on their usefulness for out-of-sample forecasting. Providing an up-to-date survey of the recent developments in periodic time series, the book presents a large number of empirical results. The first part of the book deals with model selection, diagnostic checking and forecasting of univariate periodic autoregressive models. Tests for periodic integration, are discussed, and an extensive discussion of the role of deterministic regressors in testing for periodic integration and in forecasting is provided. The second part discusses multivariate periodic autoregressive models. It provides an overview of periodic cointegration models, as these are the most relevant. This overview contains single-equation type tests and a full-system approach based on generalized method of moments. All methods are illustrated with extensive examples, and the book will be of interest to advanced graduate students and researchers in econometrics, as well as practitioners looking for an understanding of how to approach seasonal data.

Bayesian Statistical Modelling

Bayesian Statistical Modelling
Author: Peter Congdon
Publisher: John Wiley & Sons
Total Pages: 596
Release: 2007-04-04
Genre: Mathematics
ISBN: 0470035935

Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology

Encyclopedia of Financial Models, Volume I

Encyclopedia of Financial Models, Volume I
Author: Frank J. Fabozzi
Publisher: John Wiley & Sons
Total Pages: 642
Release: 2012-09-12
Genre: Business & Economics
ISBN: 1118539761

Volume 1 of the Encyclopedia of Financial Models The need for serious coverage of financial modeling has never been greater, especially with the size, diversity, and efficiency of modern capital markets. With this in mind, the Encyclopedia of Financial Models has been created to help a broad spectrum of individuals ranging from finance professionals to academics and students understand financial modeling and make use of the various models currently available. Incorporating timely research and in-depth analysis, Volume 1 of the Encyclopedia of Financial Models covers both established and cutting-edge models and discusses their real-world applications. Edited by Frank Fabozzi, this volume includes contributions from global financial experts as well as academics with extensive consulting experience in this field. Organized alphabetically by category, this reliable resource consists of thirty-nine informative entries and provides readers with a balanced understanding of today's dynamic world of financial modeling. Volume 1 addresses Asset Pricing Models, Bayesian Analysis and Financial Modeling Applications, Bond Valuation Modeling, Credit Risk Modeling, and Derivatives Valuation Emphasizes both technical and implementation issues, providing researchers, educators, students, and practitioners with the necessary background to deal with issues related to financial modeling The 3-Volume Set contains coverage of the fundamentals and advances in financial modeling and provides the mathematical and statistical techniques needed to develop and test financial models Financial models have become increasingly commonplace, as well as complex. They are essential in a wide range of financial endeavors, and the Encyclopedia of Financial Models will help put them in perspective.

Bayesian Methods in Finance

Bayesian Methods in Finance
Author: Svetlozar T. Rachev
Publisher: John Wiley & Sons
Total Pages: 351
Release: 2008-02-13
Genre: Business & Economics
ISBN: 0470249242

Bayesian Methods in Finance provides a detailed overview of the theory of Bayesian methods and explains their real-world applications to financial modeling. While the principles and concepts explained throughout the book can be used in financial modeling and decision making in general, the authors focus on portfolio management and market risk management—since these are the areas in finance where Bayesian methods have had the greatest penetration to date.

The Econometric Analysis of Seasonal Time Series

The Econometric Analysis of Seasonal Time Series
Author: Eric Ghysels
Publisher: Cambridge University Press
Total Pages: 258
Release: 2001-06-18
Genre: Business & Economics
ISBN: 9780521565882

Eric Ghysels and Denise R. Osborn provide a thorough and timely review of the recent developments in the econometric analysis of seasonal economic time series, summarizing a decade of theoretical advances in the area. The authors discuss the asymptotic distribution theory for linear nonstationary seasonal stochastic processes. They also cover the latest contributions to the theory and practice of seasonal adjustment, together with its implications for estimation and hypothesis testing. Moreover, a comprehensive analysis of periodic models is provided, including stationary and nonstationary cases. The book concludes with a discussion of some nonlinear seasonal and periodic models. The treatment is designed for an audience of researchers and advanced graduate students.

Encyclopedia of Financial Models

Encyclopedia of Financial Models
Author: Frank J. Fabozzi
Publisher: John Wiley & Sons
Total Pages: 3180
Release: 2012-10-15
Genre: Business & Economics
ISBN: 1118539958

An essential reference dedicated to a wide array of financial models, issues in financial modeling, and mathematical and statistical tools for financial modeling The need for serious coverage of financial modeling has never been greater, especially with the size, diversity, and efficiency of modern capital markets. With this in mind, the Encyclopedia of Financial Models, 3 Volume Set has been created to help a broad spectrum of individuals—ranging from finance professionals to academics and students—understand financial modeling and make use of the various models currently available. Incorporating timely research and in-depth analysis, the Encyclopedia of Financial Models is an informative 3-Volume Set that covers both established and cutting-edge models and discusses their real-world applications. Edited by Frank Fabozzi, this set includes contributions from global financial experts as well as academics with extensive consulting experience in this field. Organized alphabetically by category, this reliable resource consists of three separate volumes and 127 entries—touching on everything from asset pricing and bond valuation models to trading cost models and volatility—and provides readers with a balanced understanding of today's dynamic world of financial modeling. Frank Fabozzi follows up his successful Handbook of Finance with another major reference work, The Encyclopedia of Financial Models Covers the two major topical areas: asset valuation for cash and derivative instruments, and portfolio modeling Fabozzi explores the critical background tools from mathematics, probability theory, statistics, and operations research needed to understand these complex models Organized alphabetically by category, this book gives readers easy and quick access to specific topics sorted by an applicable category among them Asset Allocation, Credit Risk Modeling, Statistical Tools 3 Volumes onlinelibrary.wiley.com Financial models have become increasingly commonplace, as well as complex. They are essential in a wide range of financial endeavors, and this 3-Volume Set will help put them in perspective.

The Oxford Handbook of Bayesian Econometrics

The Oxford Handbook of Bayesian Econometrics
Author: John Geweke
Publisher: Oxford University Press, USA
Total Pages: 571
Release: 2011-09-29
Genre: Business & Economics
ISBN: 0199559082

A broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing.

Simulation-based Inference in Econometrics

Simulation-based Inference in Econometrics
Author: Roberto Mariano
Publisher: Cambridge University Press
Total Pages: 488
Release: 2000-07-20
Genre: Business & Economics
ISBN: 9780521591126

This substantial volume has two principal objectives. First it provides an overview of the statistical foundations of Simulation-based inference. This includes the summary and synthesis of the many concepts and results extant in the theoretical literature, the different classes of problems and estimators, the asymptotic properties of these estimators, as well as descriptions of the different simulators in use. Second, the volume provides empirical and operational examples of SBI methods. Often what is missing, even in existing applied papers, are operational issues. Which simulator works best for which problem and why? This volume will explicitly address the important numerical and computational issues in SBI which are not covered comprehensively in the existing literature. Examples of such issues are: comparisons with existing tractable methods, number of replications needed for robust results, choice of instruments, simulation noise and bias as well as efficiency loss in practice.