Bayesian Designs for Phase I-II Clinical Trials

Bayesian Designs for Phase I-II Clinical Trials
Author: Ying Yuan
Publisher: CRC Press
Total Pages: 238
Release: 2017-12-19
Genre: Mathematics
ISBN: 1315354225

Reliably optimizing a new treatment in humans is a critical first step in clinical evaluation since choosing a suboptimal dose or schedule may lead to failure in later trials. At the same time, if promising preclinical results do not translate into a real treatment advance, it is important to determine this quickly and terminate the clinical evaluation process to avoid wasting resources. Bayesian Designs for Phase I–II Clinical Trials describes how phase I–II designs can serve as a bridge or protective barrier between preclinical studies and large confirmatory clinical trials. It illustrates many of the severe drawbacks with conventional methods used for early-phase clinical trials and presents numerous Bayesian designs for human clinical trials of new experimental treatment regimes. Written by research leaders from the University of Texas MD Anderson Cancer Center, this book shows how Bayesian designs for early-phase clinical trials can explore, refine, and optimize new experimental treatments. It emphasizes the importance of basing decisions on both efficacy and toxicity.

Bayesian Adaptive Methods for Clinical Trials

Bayesian Adaptive Methods for Clinical Trials
Author: Scott M. Berry
Publisher: CRC Press
Total Pages: 316
Release: 2010-07-19
Genre: Mathematics
ISBN: 1439825513

Already popular in the analysis of medical device trials, adaptive Bayesian designs are increasingly being used in drug development for a wide variety of diseases and conditions, from Alzheimer's disease and multiple sclerosis to obesity, diabetes, hepatitis C, and HIV. Written by leading pioneers of Bayesian clinical trial designs, Bayesian Adapti

Clinical Trial Design

Clinical Trial Design
Author: Guosheng Yin
Publisher: John Wiley & Sons
Total Pages: 368
Release: 2013-06-07
Genre: Medical
ISBN: 1118183320

A balanced treatment of the theories, methodologies, and design issues involved in clinical trials using statistical methods There has been enormous interest and development in Bayesian adaptive designs, especially for early phases of clinical trials. However, for phase III trials, frequentist methods still play a dominant role through controlling type I and type II errors in the hypothesis testing framework. From practical perspectives, Clinical Trial Design: Bayesian and Frequentist Adaptive Methods provides comprehensive coverage of both Bayesian and frequentist approaches to all phases of clinical trial design. Before underpinning various adaptive methods, the book establishes an overview of the fundamentals of clinical trials as well as a comparison of Bayesian and frequentist statistics. Recognizing that clinical trial design is one of the most important and useful skills in the pharmaceutical industry, this book provides detailed discussions on a variety of statistical designs, their properties, and operating characteristics for phase I, II, and III clinical trials as well as an introduction to phase IV trials. Many practical issues and challenges arising in clinical trials are addressed. Additional topics of coverage include: Risk and benefit analysis for toxicity and efficacy trade-offs Bayesian predictive probability trial monitoring Bayesian adaptive randomization Late onset toxicity and response Dose finding in drug combination trials Targeted therapy designs The author utilizes cutting-edge clinical trial designs and statistical methods that have been employed at the world's leading medical centers as well as in the pharmaceutical industry. The software used throughout the book is freely available on the book's related website, equipping readers with the necessary tools for designing clinical trials. Clinical Trial Design is an excellent book for courses on the topic at the graduate level. The book also serves as a valuable reference for statisticians and biostatisticians in the pharmaceutical industry as well as for researchers and practitioners who design, conduct, and monitor clinical trials in their everyday work.

Small Clinical Trials

Small Clinical Trials
Author: Institute of Medicine
Publisher: National Academies Press
Total Pages: 221
Release: 2001-01-01
Genre: Medical
ISBN: 0309171148

Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.

Bayesian Designs for Phase I-II Clinical Trials

Bayesian Designs for Phase I-II Clinical Trials
Author: Ying Yuan
Publisher: Chapman & Hall/CRC
Total Pages: 0
Release: 2015-12-22
Genre: Bayesian statistical decision theory
ISBN: 9781498709552

Chapter 14: Optimizing Sedative Dose in Preterm Infants -- Bibliography -- Back Cover

Clinical Trials in Oncology, Third Edition

Clinical Trials in Oncology, Third Edition
Author: Stephanie Green
Publisher: CRC Press
Total Pages: 266
Release: 2012-05-09
Genre: Mathematics
ISBN: 1439814481

The third edition of the bestselling Clinical Trials in Oncology provides a concise, nontechnical, and thoroughly up-to-date review of methods and issues related to cancer clinical trials. The authors emphasize the importance of proper study design, analysis, and data management and identify the pitfalls inherent in these processes. In addition, the book has been restructured to have separate chapters and expanded discussions on general clinical trials issues, and issues specific to Phases I, II, and III. New sections cover innovations in Phase I designs, randomized Phase II designs, and overcoming the challenges of array data. Although this book focuses on cancer trials, the same issues and concepts are important in any clinical setting. As always, the authors use clear, lucid prose and a multitude of real-world examples to convey the principles of successful trials without the need for a strong statistics or mathematics background. Armed with Clinical Trials in Oncology, Third Edition, clinicians and statisticians can avoid the many hazards that can jeopardize the success of a trial.

Bayesian Analysis with R for Drug Development

Bayesian Analysis with R for Drug Development
Author: Harry Yang
Publisher: CRC Press
Total Pages: 251
Release: 2019-06-26
Genre: Mathematics
ISBN: 1351585932

Drug development is an iterative process. The recent publications of regulatory guidelines further entail a lifecycle approach. Blending data from disparate sources, the Bayesian approach provides a flexible framework for drug development. Despite its advantages, the uptake of Bayesian methodologies is lagging behind in the field of pharmaceutical development. Written specifically for pharmaceutical practitioners, Bayesian Analysis with R for Drug Development: Concepts, Algorithms, and Case Studies, describes a wide range of Bayesian applications to problems throughout pre-clinical, clinical, and Chemistry, Manufacturing, and Control (CMC) development. Authored by two seasoned statisticians in the pharmaceutical industry, the book provides detailed Bayesian solutions to a broad array of pharmaceutical problems. Features Provides a single source of information on Bayesian statistics for drug development Covers a wide spectrum of pre-clinical, clinical, and CMC topics Demonstrates proper Bayesian applications using real-life examples Includes easy-to-follow R code with Bayesian Markov Chain Monte Carlo performed in both JAGS and Stan Bayesian software platforms Offers sufficient background for each problem and detailed description of solutions suitable for practitioners with limited Bayesian knowledge Harry Yang, Ph.D., is Senior Director and Head of Statistical Sciences at AstraZeneca. He has 24 years of experience across all aspects of drug research and development and extensive global regulatory experiences. He has published 6 statistical books, 15 book chapters, and over 90 peer-reviewed papers on diverse scientific and statistical subjects, including 15 joint statistical works with Dr. Novick. He is a frequent invited speaker at national and international conferences. He also developed statistical courses and conducted training at the FDA and USP as well as Peking University. Steven Novick, Ph.D., is Director of Statistical Sciences at AstraZeneca. He has extensively contributed statistical methods to the biopharmaceutical literature. Novick is a skilled Bayesian computer programmer and is frequently invited to speak at conferences, having developed and taught courses in several areas, including drug-combination analysis and Bayesian methods in clinical areas. Novick served on IPAC-RS and has chaired several national statistical conferences.

Dose Finding by the Continual Reassessment Method

Dose Finding by the Continual Reassessment Method
Author: Ying Kuen Cheung
Publisher: CRC Press
Total Pages: 207
Release: 2011-03-29
Genre: Mathematics
ISBN: 1420091514

As clinicians begin to realize the important role of dose-finding in the drug development process, there is an increasing openness to "novel" methods proposed in the past two decades. In particular, the Continual Reassessment Method (CRM) and its variations have drawn much attention in the medical community, though it has yet to become a commonplace tool. To overcome the status quo in phase I clinical trials, statisticians must be able to design trials using the CRM in a timely and reproducible manner. A self-contained theoretical framework of the CRM for researchers and graduate students who set out to learn and do research in the CRM and dose-finding methods in general, Dose Finding by the Continual Reassessment Method features: Real clinical trial examples that illustrate the methods and techniques throughout the book Detailed calibration techniques that enable biostatisticians to design a CRM in timely manner Limitations of the CRM are outlined to aid in correct use of method This book supplies practical, efficient dose-finding methods based on cutting edge statistical research. More than just a cookbook, it provides full, unified coverage of the CRM in addition to step-by-step guidelines to automation and parameterization of the methods used on a regular basis. A detailed exposition of the calibration of the CRM for applied statisticians working with dose-finding in phase I trials, the book focuses on the R package ‘dfcrm’ for the CRM and its major variants. The author recognizes clinicians’ skepticism of model-based designs, and addresses their concerns that the time, professional, and computational resources necessary for accurate model-based designs can be major bottlenecks to the widespread use of appropriate dose-finding methods in phase I practice. The theoretically- and empirically-based methods in Dose Finding by the Continual Reassessment Method will lessen the statistician’s burden and encourage the continuing development and implementation of model-based dose-finding methods.

Sequential Experimentation in Clinical Trials

Sequential Experimentation in Clinical Trials
Author: Jay Bartroff
Publisher: Springer Science & Business Media
Total Pages: 250
Release: 2012-12-12
Genre: Medical
ISBN: 1461461146

Sequential Experimentation in Clinical Trials: Design and Analysis is developed from decades of work in research groups, statistical pedagogy, and workshop participation. Different parts of the book can be used for short courses on clinical trials, translational medical research, and sequential experimentation. The authors have successfully used the book to teach innovative clinical trial designs and statistical methods for Statistics Ph.D. students at Stanford University. There are additional online supplements for the book that include chapter-specific exercises and information. Sequential Experimentation in Clinical Trials: Design and Analysis covers the much broader subject of sequential experimentation that includes group sequential and adaptive designs of Phase II and III clinical trials, which have attracted much attention in the past three decades. In particular, the broad scope of design and analysis problems in sequential experimentation clearly requires a wide range of statistical methods and models from nonlinear regression analysis, experimental design, dynamic programming, survival analysis, resampling, and likelihood and Bayesian inference. The background material in these building blocks is summarized in Chapter 2 and Chapter 3 and certain sections in Chapter 6 and Chapter 7. Besides group sequential tests and adaptive designs, the book also introduces sequential change-point detection methods in Chapter 5 in connection with pharmacovigilance and public health surveillance. Together with dynamic programming and approximate dynamic programming in Chapter 3, the book therefore covers all basic topics for a graduate course in sequential analysis designs.

Modern Approaches to Clinical Trials Using SAS

Modern Approaches to Clinical Trials Using SAS
Author: Sandeep Menon
Publisher: SAS Institute
Total Pages: 496
Release: 2015-12-09
Genre: Computers
ISBN: 1629600822

Get the tools you need to use SAS® in clinical trial design! Unique and multifaceted, Modern Approaches to Clinical Trials Using SAS: Classical, Adaptive, and Bayesian Methods, edited by Sandeep M. Menon and Richard C. Zink, thoroughly covers several domains of modern clinical trial design: classical, group sequential, adaptive, and Bayesian methods that are applicable to and widely used in various phases of pharmaceutical development. Written for biostatisticians, pharmacometricians, clinical developers, and statistical programmers involved in the design, analysis, and interpretation of clinical trials, as well as students in graduate and postgraduate programs in statistics or biostatistics, the book touches on a wide variety of topics, including dose-response and dose-escalation designs; sequential methods to stop trials early for overwhelming efficacy, safety, or futility; Bayesian designs that incorporate historical data; adaptive sample size re-estimation; adaptive randomization to allocate subjects to more effective treatments; and population enrichment designs. Methods are illustrated using clinical trials from diverse therapeutic areas, including dermatology, endocrinology, infectious disease, neurology, oncology, and rheumatology. Individual chapters are authored by renowned contributors, experts, and key opinion leaders from the pharmaceutical/medical device industry or academia. Numerous real-world examples and sample SAS code enable users to readily apply novel clinical trial design and analysis methodologies in practice.