Bayesian Applications in Pharmaceutical Development

Bayesian Applications in Pharmaceutical Development
Author: Mani Lakshminarayanan
Publisher: CRC Press
Total Pages: 533
Release: 2019-11-07
Genre: Business & Economics
ISBN: 1351584170

The cost for bringing new medicine from discovery to market has nearly doubled in the last decade and has now reached $2.6 billion. There is an urgent need to make drug development less time-consuming and less costly. Innovative trial designs/ analyses such as the Bayesian approach are essential to meet this need. This book will be the first to provide comprehensive coverage of Bayesian applications across the span of drug development, from discovery, to clinical trial, to manufacturing with practical examples. This book will have a wide appeal to statisticians, scientists, and physicians working in drug development who are motivated to accelerate and streamline the drug development process, as well as students who aspire to work in this field. The advantages of this book are: Provides motivating, worked, practical case examples with easy to grasp models, technical details, and computational codes to run the analyses Balances practical examples with best practices on trial simulation and reporting, as well as regulatory perspectives Chapters written by authors who are individual contributors in their respective topics Dr. Mani Lakshminarayanan is a researcher and statistical consultant with more than 30 years of experience in the pharmaceutical industry. He has published over 50 articles, technical reports, and book chapters besides serving as a referee for several journals. He has a PhD in Statistics from Southern Methodist University, Dallas, Texas and is a Fellow of the American Statistical Association. Dr. Fanni Natanegara has over 15 years of pharmaceutical experience and is currently Principal Research Scientist and Group Leader for the Early Phase Neuroscience Statistics team at Eli Lilly and Company. She played a key role in the Advanced Analytics team to provide Bayesian education and statistical consultation at Eli Lilly. Dr. Natanegara is the chair of the cross industry-regulatory-academic DIA BSWG to ensure that Bayesian methods are appropriately utilized for design and analysis throughout the drug-development process.

Bayesian Analysis with R for Drug Development

Bayesian Analysis with R for Drug Development
Author: Harry Yang
Publisher: CRC Press
Total Pages: 251
Release: 2019-06-26
Genre: Mathematics
ISBN: 1351585932

Drug development is an iterative process. The recent publications of regulatory guidelines further entail a lifecycle approach. Blending data from disparate sources, the Bayesian approach provides a flexible framework for drug development. Despite its advantages, the uptake of Bayesian methodologies is lagging behind in the field of pharmaceutical development. Written specifically for pharmaceutical practitioners, Bayesian Analysis with R for Drug Development: Concepts, Algorithms, and Case Studies, describes a wide range of Bayesian applications to problems throughout pre-clinical, clinical, and Chemistry, Manufacturing, and Control (CMC) development. Authored by two seasoned statisticians in the pharmaceutical industry, the book provides detailed Bayesian solutions to a broad array of pharmaceutical problems. Features Provides a single source of information on Bayesian statistics for drug development Covers a wide spectrum of pre-clinical, clinical, and CMC topics Demonstrates proper Bayesian applications using real-life examples Includes easy-to-follow R code with Bayesian Markov Chain Monte Carlo performed in both JAGS and Stan Bayesian software platforms Offers sufficient background for each problem and detailed description of solutions suitable for practitioners with limited Bayesian knowledge Harry Yang, Ph.D., is Senior Director and Head of Statistical Sciences at AstraZeneca. He has 24 years of experience across all aspects of drug research and development and extensive global regulatory experiences. He has published 6 statistical books, 15 book chapters, and over 90 peer-reviewed papers on diverse scientific and statistical subjects, including 15 joint statistical works with Dr. Novick. He is a frequent invited speaker at national and international conferences. He also developed statistical courses and conducted training at the FDA and USP as well as Peking University. Steven Novick, Ph.D., is Director of Statistical Sciences at AstraZeneca. He has extensively contributed statistical methods to the biopharmaceutical literature. Novick is a skilled Bayesian computer programmer and is frequently invited to speak at conferences, having developed and taught courses in several areas, including drug-combination analysis and Bayesian methods in clinical areas. Novick served on IPAC-RS and has chaired several national statistical conferences.

Bayesian Methods in Pharmaceutical Research

Bayesian Methods in Pharmaceutical Research
Author: Emmanuel Lesaffre
Publisher: CRC Press
Total Pages: 547
Release: 2020-04-15
Genre: Medical
ISBN: 1351718673

Since the early 2000s, there has been increasing interest within the pharmaceutical industry in the application of Bayesian methods at various stages of the research, development, manufacturing, and health economic evaluation of new health care interventions. In 2010, the first Applied Bayesian Biostatistics conference was held, with the primary objective to stimulate the practical implementation of Bayesian statistics, and to promote the added-value for accelerating the discovery and the delivery of new cures to patients. This book is a synthesis of the conferences and debates, providing an overview of Bayesian methods applied to nearly all stages of research and development, from early discovery to portfolio management. It highlights the value associated with sharing a vision with the regulatory authorities, academia, and pharmaceutical industry, with a view to setting up a common strategy for the appropriate use of Bayesian statistics for the benefit of patients. The book covers: Theory, methods, applications, and computing Bayesian biostatistics for clinical innovative designs Adding value with Real World Evidence Opportunities for rare, orphan diseases, and pediatric development Applied Bayesian biostatistics in manufacturing Decision making and Portfolio management Regulatory perspective and public health policies Statisticians and data scientists involved in the research, development, and approval of new cures will be inspired by the possible applications of Bayesian methods covered in the book. The methods, applications, and computational guidance will enable the reader to apply Bayesian methods in their own pharmaceutical research.

Bayesian Adaptive Methods for Clinical Trials

Bayesian Adaptive Methods for Clinical Trials
Author: Scott M. Berry
Publisher: CRC Press
Total Pages: 316
Release: 2010-07-19
Genre: Mathematics
ISBN: 1439825513

Already popular in the analysis of medical device trials, adaptive Bayesian designs are increasingly being used in drug development for a wide variety of diseases and conditions, from Alzheimer's disease and multiple sclerosis to obesity, diabetes, hepatitis C, and HIV. Written by leading pioneers of Bayesian clinical trial designs, Bayesian Adapti

Clinical Trial Design

Clinical Trial Design
Author: Guosheng Yin
Publisher: John Wiley & Sons
Total Pages: 368
Release: 2013-06-07
Genre: Medical
ISBN: 1118183320

A balanced treatment of the theories, methodologies, and design issues involved in clinical trials using statistical methods There has been enormous interest and development in Bayesian adaptive designs, especially for early phases of clinical trials. However, for phase III trials, frequentist methods still play a dominant role through controlling type I and type II errors in the hypothesis testing framework. From practical perspectives, Clinical Trial Design: Bayesian and Frequentist Adaptive Methods provides comprehensive coverage of both Bayesian and frequentist approaches to all phases of clinical trial design. Before underpinning various adaptive methods, the book establishes an overview of the fundamentals of clinical trials as well as a comparison of Bayesian and frequentist statistics. Recognizing that clinical trial design is one of the most important and useful skills in the pharmaceutical industry, this book provides detailed discussions on a variety of statistical designs, their properties, and operating characteristics for phase I, II, and III clinical trials as well as an introduction to phase IV trials. Many practical issues and challenges arising in clinical trials are addressed. Additional topics of coverage include: Risk and benefit analysis for toxicity and efficacy trade-offs Bayesian predictive probability trial monitoring Bayesian adaptive randomization Late onset toxicity and response Dose finding in drug combination trials Targeted therapy designs The author utilizes cutting-edge clinical trial designs and statistical methods that have been employed at the world's leading medical centers as well as in the pharmaceutical industry. The software used throughout the book is freely available on the book's related website, equipping readers with the necessary tools for designing clinical trials. Clinical Trial Design is an excellent book for courses on the topic at the graduate level. The book also serves as a valuable reference for statisticians and biostatisticians in the pharmaceutical industry as well as for researchers and practitioners who design, conduct, and monitor clinical trials in their everyday work.

Bayesian Analysis with R for Drug Development

Bayesian Analysis with R for Drug Development
Author: Harry Yang
Publisher: CRC Press
Total Pages: 310
Release: 2019-06-26
Genre: Mathematics
ISBN: 1351585940

Drug development is an iterative process. The recent publications of regulatory guidelines further entail a lifecycle approach. Blending data from disparate sources, the Bayesian approach provides a flexible framework for drug development. Despite its advantages, the uptake of Bayesian methodologies is lagging behind in the field of pharmaceutical development. Written specifically for pharmaceutical practitioners, Bayesian Analysis with R for Drug Development: Concepts, Algorithms, and Case Studies, describes a wide range of Bayesian applications to problems throughout pre-clinical, clinical, and Chemistry, Manufacturing, and Control (CMC) development. Authored by two seasoned statisticians in the pharmaceutical industry, the book provides detailed Bayesian solutions to a broad array of pharmaceutical problems. Features Provides a single source of information on Bayesian statistics for drug development Covers a wide spectrum of pre-clinical, clinical, and CMC topics Demonstrates proper Bayesian applications using real-life examples Includes easy-to-follow R code with Bayesian Markov Chain Monte Carlo performed in both JAGS and Stan Bayesian software platforms Offers sufficient background for each problem and detailed description of solutions suitable for practitioners with limited Bayesian knowledge Harry Yang, Ph.D., is Senior Director and Head of Statistical Sciences at AstraZeneca. He has 24 years of experience across all aspects of drug research and development and extensive global regulatory experiences. He has published 6 statistical books, 15 book chapters, and over 90 peer-reviewed papers on diverse scientific and statistical subjects, including 15 joint statistical works with Dr. Novick. He is a frequent invited speaker at national and international conferences. He also developed statistical courses and conducted training at the FDA and USP as well as Peking University. Steven Novick, Ph.D., is Director of Statistical Sciences at AstraZeneca. He has extensively contributed statistical methods to the biopharmaceutical literature. Novick is a skilled Bayesian computer programmer and is frequently invited to speak at conferences, having developed and taught courses in several areas, including drug-combination analysis and Bayesian methods in clinical areas. Novick served on IPAC-RS and has chaired several national statistical conferences.

Handbook of Adaptive Designs in Pharmaceutical and Clinical Development

Handbook of Adaptive Designs in Pharmaceutical and Clinical Development
Author: Annpey Pong
Publisher: CRC Press
Total Pages: 475
Release: 2016-04-19
Genre: Mathematics
ISBN: 1439810176

In response to the US FDA's Critical Path Initiative, innovative adaptive designs are being used more and more in clinical trials due to their flexibility and efficiency, especially during early phase development. Handbook of Adaptive Designs in Pharmaceutical and Clinical Development provides a comprehensive and unified presentation of the princip

Real-World Evidence in Drug Development and Evaluation

Real-World Evidence in Drug Development and Evaluation
Author: Harry Yang
Publisher: CRC Press
Total Pages: 191
Release: 2021-01-11
Genre: Mathematics
ISBN: 0429676824

Real-world evidence (RWE) has been at the forefront of pharmaceutical innovations. It plays an important role in transforming drug development from a process aimed at meeting regulatory expectations to an operating model that leverages data from disparate sources to aid business, regulatory, and healthcare decision making. Despite its many benefits, there is no single book systematically covering the latest development in the field. Written specifically for pharmaceutical practitioners, Real-World Evidence in Drug Development and Evaluation, presents a wide range of RWE applications throughout the lifecycle of drug product development. With contributions from experienced researchers in the pharmaceutical industry, the book discusses at length RWE opportunities, challenges, and solutions. Features Provides the first book and a single source of information on RWE in drug development Covers a broad array of topics on outcomes- and value-based RWE assessments Demonstrates proper Bayesian application and causal inference for real-world data (RWD) Presents real-world use cases to illustrate the use of advanced analytics and statistical methods to generate insights Offers a balanced discussion of practical RWE issues at hand and technical solutions suitable for practitioners with limited data science expertise

Bayesian Approaches to Clinical Trials and Health-Care Evaluation

Bayesian Approaches to Clinical Trials and Health-Care Evaluation
Author: David J. Spiegelhalter
Publisher: John Wiley & Sons
Total Pages: 416
Release: 2004-01-16
Genre: Mathematics
ISBN: 9780471499756

READ ALL ABOUT IT! David Spiegelhalter has recently joined the ranks of Isaac Newton, Charles Darwin and Stephen Hawking by becoming a fellow of the Royal Society. Originating from the Medical Research Council’s biostatistics unit, David has played a leading role in the Bristol heart surgery and Harold Shipman inquiries. Order a copy of this author’s comprehensive text TODAY! The Bayesian approach involves synthesising data and judgement in order to reach conclusions about unknown quantities and make predictions. Bayesian methods have become increasingly popular in recent years, notably in medical research, and although there are a number of books on Bayesian analysis, few cover clinical trials and biostatistical applications in any detail. Bayesian Approaches to Clinical Trials and Health-Care Evaluation provides a valuable overview of this rapidly evolving field, including basic Bayesian ideas, prior distributions, clinical trials, observational studies, evidence synthesis and cost-effectiveness analysis. Covers a broad array of essential topics, building from the basics to more advanced techniques. Illustrated throughout by detailed case studies and worked examples Includes exercises in all chapters Accessible to anyone with a basic knowledge of statistics Authors are at the forefront of research into Bayesian methods in medical research Accompanied by a Web site featuring data sets and worked examples using Excel and WinBUGS - the most widely used Bayesian modelling package Bayesian Approaches to Clinical Trials and Health-Care Evaluation is suitable for students and researchers in medical statistics, statisticians in the pharmaceutical industry, and anyone involved in conducting clinical trials and assessment of health-care technology.

Statistical Issues in Drug Development

Statistical Issues in Drug Development
Author: Stephen S. Senn
Publisher: John Wiley & Sons
Total Pages: 523
Release: 2008-02-28
Genre: Medical
ISBN: 9780470723579

Drug development is the process of finding and producingtherapeutically useful pharmaceuticals, turning them into safe andeffective medicine, and producing reliable information regardingthe appropriate dosage and dosing intervals. With regulatoryauthorities demanding increasingly higher standards in suchdevelopments, statistics has become an intrinsic and criticalelement in the design and conduct of drug development programmes. Statistical Issues in Drug Development presents anessential and thought provoking guide to the statistical issues andcontroversies involved in drug development. This highly readable second edition has been updated toinclude: Comprehensive coverage of the design and interpretation ofclinical trials. Expanded sections on missing data, equivalence, meta-analysisand dose finding. An examination of both Bayesian and frequentist methods. A new chapter on pharmacogenomics and expanded coverage ofpharmaco-epidemiology and pharmaco-economics. Coverage of the ICH guidelines, in particular ICH E9,Statistical Principles for Clinical Trials. It is hoped that the book will stimulate dialogue betweenstatisticians and life scientists working within the pharmaceuticalindustry. The accessible and wide-ranging coverage make itessential reading for both statisticians and non-statisticiansworking in the pharmaceutical industry, regulatory bodies andmedical research institutes. There is also much to benefitundergraduate and postgraduate students whose courses include amedical statistics component.