Basic Techniques of Combinatorial Theory
Author | : Daniel I. A. Cohen |
Publisher | : John Wiley & Sons |
Total Pages | : 318 |
Release | : 1978 |
Genre | : Mathematics |
ISBN | : |
Download Basic Techniques Of Combinatorial Theory full books in PDF, epub, and Kindle. Read online free Basic Techniques Of Combinatorial Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Daniel I. A. Cohen |
Publisher | : John Wiley & Sons |
Total Pages | : 318 |
Release | : 1978 |
Genre | : Mathematics |
ISBN | : |
Author | : Alexander Mikhalev |
Publisher | : Springer Science & Business Media |
Total Pages | : 336 |
Release | : 2004 |
Genre | : Mathematics |
ISBN | : 9780387405629 |
The main purpose of this book is to show how ideas from combinatorial group theory have spread to two other areas of mathematics: the theory of Lie algebras and affine algebraic geometry. Some of these ideas, in turn, came to combinatorial group theory from low-dimensional topology in the beginning of the 20th Century. This book is divided into three fairly independent parts. Part I provides a brief exposition of several classical techniques in combinatorial group theory, namely, methods of Nielsen, Whitehead, and Tietze. Part II contains the main focus of the book. Here the authors show how the aforementioned techniques of combinatorial group theory found their way into affine algebraic geometry, a fascinating area of mathematics that studies polynomials and polynomial mappings. Part III illustrates how ideas from combinatorial group theory contributed to the theory of free algebras. The focus here is on Schreier varieties of algebras (a variety of algebras is said to be Schreier if any subalgebra of a free algebra of this variety is free in the same variety of algebras).
Author | : Martin Aigner |
Publisher | : Springer Science & Business Media |
Total Pages | : 493 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642591019 |
This book offers a well-organized, easy-to-follow introduction to combinatorial theory, with examples, notes and exercises. ". . . a very good introduction to combinatorics. This book can warmly be recommended first of all to students interested in combinatorics." Publicationes Mathematicae Debrecen
Author | : Lorenz J. Halbeisen |
Publisher | : Springer |
Total Pages | : 586 |
Release | : 2017-12-20 |
Genre | : Mathematics |
ISBN | : 3319602314 |
This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters. Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is suitable for self-study.
Author | : Chuan-Chong Chen |
Publisher | : World Scientific |
Total Pages | : 314 |
Release | : 1992 |
Genre | : Mathematics |
ISBN | : 9789810211394 |
A textbook suitable for undergraduate courses. The materials are presented very explicitly so that students will find it very easy to read. A wide range of examples, about 500 combinatorial problems taken from various mathematical competitions and exercises are also included.
Author | : Chuan Chong Chen |
Publisher | : World Scientific |
Total Pages | : 314 |
Release | : 1992-07-22 |
Genre | : Mathematics |
ISBN | : 981436567X |
A textbook suitable for undergraduate courses. The materials are presented very explicitly so that students will find it very easy to read. A wide range of examples, about 500 combinatorial problems taken from various mathematical competitions and exercises are also included.
Author | : Sharad S. Sane |
Publisher | : Hindustan Book Agency |
Total Pages | : 0 |
Release | : 2013-01-15 |
Genre | : Mathematics |
ISBN | : 9789380250489 |
This is a basic text on combinatorics that deals with all the three aspects of the discipline: tricks, techniques and theory, and attempts to blend them. The book has several distinctive features. Probability and random variables with their interconnections to permutations are discussed. The theme of parity has been specially included and it covers applications ranging from solving the Nim game to the quadratic reciprocity law. Chapters related to geometry include triangulations and Sperner's theorem, classification of regular polytopes, tilings and an introduction to the Eulcidean Ramsey theory. Material on group actions covers Sylow theory, automorphism groups and a classification of finite subgroups of orthogonal groups. All chapters have a large number of exercises with varying degrees of difficulty, ranging from material suitable for Mathematical Olympiads to research.
Author | : Peter Jephson Cameron |
Publisher | : Cambridge University Press |
Total Pages | : 372 |
Release | : 1994-10-06 |
Genre | : Mathematics |
ISBN | : 9780521457613 |
Combinatorics is a subject of increasing importance because of its links with computer science, statistics, and algebra. This textbook stresses common techniques (such as generating functions and recursive construction) that underlie the great variety of subject matter, and the fact that a constructive or algorithmic proof is more valuable than an existence proof. The author emphasizes techniques as well as topics and includes many algorithms described in simple terms. The text should provide essential background for students in all parts of discrete mathematics.
Author | : Philippe Flajolet |
Publisher | : Cambridge University Press |
Total Pages | : 825 |
Release | : 2009-01-15 |
Genre | : Mathematics |
ISBN | : 1139477161 |
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
Author | : Bruce E. Sagan |
Publisher | : American Mathematical Soc. |
Total Pages | : 304 |
Release | : 2020-10-16 |
Genre | : Education |
ISBN | : 1470460327 |
This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.