Basic Probability Theory And Applications
Download Basic Probability Theory And Applications full books in PDF, epub, and Kindle. Read online free Basic Probability Theory And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Mario Lefebvre |
Publisher | : Springer Science & Business Media |
Total Pages | : 347 |
Release | : 2009-10-03 |
Genre | : Mathematics |
ISBN | : 0387749950 |
The main intended audience for this book is undergraduate students in pure and applied sciences, especially those in engineering. Chapters 2 to 4 cover the probability theory they generally need in their training. Although the treatment of the subject is surely su?cient for non-mathematicians, I intentionally avoided getting too much into detail. For instance, topics such as mixed type random variables and the Dirac delta function are only brie?y mentioned. Courses on probability theory are often considered di?cult. However, after having taught this subject for many years, I have come to the conclusion that one of the biggest problems that the students face when they try to learn probability theory, particularly nowadays, is their de?ciencies in basic di?erential and integral calculus. Integration by parts, for example, is often already forgotten by the students when they take a course on probability. For this reason, I have decided to write a chapter reviewing the basic elements of di?erential calculus. Even though this chapter might not be covered in class, the students can refer to it when needed. In this chapter, an e?ort was made to give the readers a good idea of the use in probability theory of the concepts they should already know. Chapter 2 presents the main results of what is known as elementary probability, including Bayes’ rule and elements of combinatorial analysis.
Author | : Malempati M. Rao |
Publisher | : Springer Science & Business Media |
Total Pages | : 537 |
Release | : 2006-06-03 |
Genre | : Mathematics |
ISBN | : 0387277315 |
This is a revised and expanded edition of a successful graduate and reference text. The book is designed for a standard graduate course on probability theory, including some important applications. The new edition offers a detailed treatment of the core area of probability, and both structural and limit results are presented in detail. Compared to the first edition, the material and presentation are better highlighted; each chapter is improved and updated.
Author | : Valeriy Skorokhod |
Publisher | : Springer Science & Business Media |
Total Pages | : 276 |
Release | : 2005-12-05 |
Genre | : Mathematics |
ISBN | : 3540263128 |
The book is an introduction to modern probability theory written by one of the famous experts in this area. Readers will learn about the basic concepts of probability and its applications, preparing them for more advanced and specialized works.
Author | : Henry C. Tuckwell |
Publisher | : Routledge |
Total Pages | : 324 |
Release | : 2018-02-06 |
Genre | : Mathematics |
ISBN | : 1351452959 |
This book provides a clear and straightforward introduction to applications of probability theory with examples given in the biological sciences and engineering. The first chapter contains a summary of basic probability theory. Chapters two to five deal with random variables and their applications. Topics covered include geometric probability, estimation of animal and plant populations, reliability theory and computer simulation. Chapter six contains a lucid account of the convergence of sequences of random variables, with emphasis on the central limit theorem and the weak law of numbers. The next four chapters introduce random processes, including random walks and Markov chains illustrated by examples in population genetics and population growth. This edition also includes two chapters which introduce, in a manifestly readable fashion, the topic of stochastic differential equations and their applications.
Author | : Robert B. Ash |
Publisher | : Courier Corporation |
Total Pages | : 354 |
Release | : 2008-06-26 |
Genre | : Mathematics |
ISBN | : 0486466280 |
This introduction to more advanced courses in probability and real analysis emphasizes the probabilistic way of thinking, rather than measure-theoretic concepts. Geared toward advanced undergraduates and graduate students, its sole prerequisite is calculus. Taking statistics as its major field of application, the text opens with a review of basic concepts, advancing to surveys of random variables, the properties of expectation, conditional probability and expectation, and characteristic functions. Subsequent topics include infinite sequences of random variables, Markov chains, and an introduction to statistics. Complete solutions to some of the problems appear at the end of the book.
Author | : Ross Leadbetter |
Publisher | : Cambridge University Press |
Total Pages | : 375 |
Release | : 2014-01-30 |
Genre | : Mathematics |
ISBN | : 1107020409 |
A concise introduction covering all of the measure theory and probability most useful for statisticians.
Author | : Rick Durrett |
Publisher | : Cambridge University Press |
Total Pages | : 255 |
Release | : 2009-07-31 |
Genre | : Mathematics |
ISBN | : 1139480731 |
This clear and lively introduction to probability theory concentrates on the results that are the most useful for applications, including combinatorial probability and Markov chains. Concise and focused, it is designed for a one-semester introductory course in probability for students who have some familiarity with basic calculus. Reflecting the author's philosophy that the best way to learn probability is to see it in action, there are more than 350 problems and 200 examples. The examples contain all the old standards such as the birthday problem and Monty Hall, but also include a number of applications not found in other books, from areas as broad ranging as genetics, sports, finance, and inventory management.
Author | : Tamás Rudas |
Publisher | : SAGE |
Total Pages | : 489 |
Release | : 2008-02-21 |
Genre | : Mathematics |
ISBN | : 1412927145 |
"This is a valuable reference guide for readers interested in gaining a basic understanding of probability theory or its applications in problem solving in the other disciplines." —CHOICE Providing cutting-edge perspectives and real-world insights into the greater utility of probability and its applications, the Handbook of Probability offers an equal balance of theory and direct applications in a non-technical, yet comprehensive, format. Editor Tamás Rudas and the internationally-known contributors present the material in a manner so that researchers of various backgrounds can use the reference either as a primer for understanding basic probability theory or as a more advanced research tool for specific projects requiring a deeper understanding. The wide-ranging applications of probability presented make it useful for scholars who need to make interdisciplinary connections in their work. Key Features Contains contributions from the international who's-who of probability across several disciplines Offers an equal balance of theory and applications Explains the most important concepts of probability theory in a non-technical yet comprehensive way Provides in-depth examples of recent applications in the social and behavioral sciences as well as education, business, and law Intended Audience This Handbook makes an ideal library purchase. In addition, this volume should also be of interest to individual scholars in the social and behavioral sciences.
Author | : Narayanaswamy Balakrishnan |
Publisher | : John Wiley & Sons |
Total Pages | : 548 |
Release | : 2021-11-24 |
Genre | : Mathematics |
ISBN | : 1118548558 |
INTRODUCTION TO PROBABILITY Discover practical models and real-world applications of multivariate models useful in engineering, business, and related disciplines In Introduction to Probability: Multivariate Models and Applications, a team of distinguished researchers delivers a comprehensive exploration of the concepts, methods, and results in multivariate distributions and models. Intended for use in a second course in probability, the material is largely self-contained, with some knowledge of basic probability theory and univariate distributions as the only prerequisite. This textbook is intended as the sequel to Introduction to Probability: Models and Applications. Each chapter begins with a brief historical account of some of the pioneers in probability who made significant contributions to the field. It goes on to describe and explain a critical concept or method in multivariate models and closes with two collections of exercises designed to test basic and advanced understanding of the theory. A wide range of topics are covered, including joint distributions for two or more random variables, independence of two or more variables, transformations of variables, covariance and correlation, a presentation of the most important multivariate distributions, generating functions and limit theorems. This important text: Includes classroom-tested problems and solutions to probability exercises Highlights real-world exercises designed to make clear the concepts presented Uses Mathematica software to illustrate the text’s computer exercises Features applications representing worldwide situations and processes Offers two types of self-assessment exercises at the end of each chapter, so that students may review the material in that chapter and monitor their progress Perfect for students majoring in statistics, engineering, business, psychology, operations research and mathematics taking a second course in probability, Introduction to Probability: Multivariate Models and Applications is also an indispensable resource for anyone who is required to use multivariate distributions to model the uncertainty associated with random phenomena.
Author | : David F. Anderson |
Publisher | : Cambridge University Press |
Total Pages | : 447 |
Release | : 2017-11-02 |
Genre | : Mathematics |
ISBN | : 110824498X |
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.