Basic Principles Of Structural Equation Modeling
Download Basic Principles Of Structural Equation Modeling full books in PDF, epub, and Kindle. Read online free Basic Principles Of Structural Equation Modeling ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Rex B. Kline |
Publisher | : Guilford Publications |
Total Pages | : 554 |
Release | : 2015-10-08 |
Genre | : Social Science |
ISBN | : 1462523005 |
This book has been replaced by Principles and Practice of Structural Equation Modeling, Fifth Edition, ISBN 978-1-4625-5191-0.
Author | : Ralph O. Mueller |
Publisher | : Springer Science & Business Media |
Total Pages | : 269 |
Release | : 1999-06-04 |
Genre | : Social Science |
ISBN | : 0387945164 |
During the last two decades, structural equation modeling (SEM) has emerged as a powerful multivariate data analysis tool in social science research settings, especially in the fields of sociology, psychology, and education. Although its roots can be traced back to the first half of this century, when Spearman (1904) developed factor analysis and Wright (1934) introduced path analysis, it was not until the 1970s that the works by Karl Joreskog and his associates (e. g. , Joreskog, 1977; Joreskog and Van Thillo, 1973) began to make general SEM techniques accessible to the social and behavioral science research communities. Today, with the development and increasing avail ability of SEM computer programs, SEM has become a well-established and respected data analysis method, incorporating many of the traditional analysis techniques as special cases. State-of-the-art SEM software packages such as LISREL (Joreskog and Sorbom, 1993a,b) and EQS (Bentler, 1993; Bentler and Wu, 1993) handle a variety of ordinary least squares regression designs as well as complex structural equation models involving variables with arbitrary distributions. Unfortunately, many students and researchers hesitate to use SEM methods, perhaps due to the somewhat complex underlying statistical repre sentation and theory. In my opinion, social science students and researchers can benefit greatly from acquiring knowledge and skills in SEM since the methods-applied appropriately-can provide a bridge between the theo retical and empirical aspects of behavioral research.
Author | : K. Strang |
Publisher | : Palgrave Macmillan |
Total Pages | : 0 |
Release | : 2015-11-19 |
Genre | : Computers |
ISBN | : 9781349479061 |
The Palgrave Handbook of Research Design in Business and Management uses a new state-of-the-art research design typology model to guide researchers in creating the blueprints for their experiments. By focusing on theory and cutting-edge empirical best-practices, this handbook utilizes visual techniques to appease all learning styles.
Author | : Barbara M. Byrne |
Publisher | : Psychology Press |
Total Pages | : 348 |
Release | : 2001-04 |
Genre | : Psychology |
ISBN | : 1135667683 |
This book illustrates the ease with which AMOS 4.0 can be used to address research questions that lend themselves to structural equation modeling (SEM). This goal is achieved by: 1) presenting a nonmathematical introduction to the basic concepts and appli.
Author | : Geoffrey M. Maruyama |
Publisher | : SAGE Publications |
Total Pages | : 328 |
Release | : 1997-09-22 |
Genre | : Social Science |
ISBN | : 150632035X |
With the availability of software programs such as LISREL, EQS, and AMOS modeling techniques have become a popular tool for formalized presentation of the hypothesized relationships underlying correlational research and for testing the plausibility of hypothesizing for a particular data set. The popularity of these techniques, however, has often led to misunderstandings of them, particularly by students being exposed to them for the first time. Through the use of careful narrative explanation, Basics of Structural Equation Modeling describes the logic underlying structural equation modeling (SEM) approaches, describes how SEM approaches relate to techniques like regression and factor analysis, analyzes the strengths and shortcomings of SEM as compared to alternative methodologies, and explores the various methodologies for analyzing structural equation data.
Author | : Barbara M. Byrne |
Publisher | : Routledge |
Total Pages | : 431 |
Release | : 2013-06-17 |
Genre | : Psychology |
ISBN | : 1136663460 |
Modeled after Barbara Byrne’s other best-selling structural equation modeling (SEM) books, this practical guide reviews the basic concepts and applications of SEM using Mplus Versions 5 & 6. The author reviews SEM applications based on actual data taken from her own research. Using non-mathematical language, it is written for the novice SEM user. With each application chapter, the author "walks" the reader through all steps involved in testing the SEM model including: an explanation of the issues addressed illustrated and annotated testing of the hypothesized and post hoc models explanation and interpretation of all Mplus input and output files important caveats pertinent to the SEM application under study a description of the data and reference upon which the model was based the corresponding data and syntax files available under "Supplementary Material" below The first two chapters introduce the fundamental concepts of SEM and important basics of the Mplus program. The remaining chapters focus on SEM applications and include a variety of SEM models presented within the context of three sections: Single-group analyses, Multiple-group analyses, and other important topics, the latter of which includes the multitrait-multimethod, latent growth curve, and multilevel models. Intended for researchers, practitioners, and students who use SEM and Mplus, this book is an ideal resource for graduate level courses on SEM taught in psychology, education, business, and other social and health sciences and/or as a supplement for courses on applied statistics, multivariate statistics, intermediate or advanced statistics, and/or research design. Appropriate for those with limited exposure to SEM or Mplus, a prerequisite of basic statistics through regression analysis is recommended.
Author | : Jörg Henseler |
Publisher | : Guilford Publications |
Total Pages | : 387 |
Release | : 2020-12-24 |
Genre | : Social Science |
ISBN | : 1462545610 |
This book presents powerful tools for integrating interrelated composites--such as capabilities, policies, treatments, indices, and systems--into structural equation modeling (SEM). Jörg Henseler introduces the types of research questions that can be addressed with composite-based SEM and explores the differences between composite- and factor-based SEM, variance- and covariance-based SEM, and emergent and latent variables. Using rich illustrations and walked-through data sets, the book covers how to specify, identify, estimate, and assess composite models using partial least squares path modeling, maximum likelihood, and other estimators, as well as how to interpret findings and report the results. Advanced topics include confirmatory composite analysis, mediation analysis, second-order constructs, interaction effects, and importance–performance analysis. Most chapters conclude with software tutorials for ADANCO and the R package cSEM. The companion website includes data files and syntax for the book's examples, along with presentation slides.
Author | : Bruce H. Pugesek |
Publisher | : Cambridge University Press |
Total Pages | : 427 |
Release | : 2003-01-23 |
Genre | : Nature |
ISBN | : 1139435396 |
Structural equation modelling (SEM) is a technique that is used to estimate, analyse and test models that specify relationships among variables. The ability to conduct such analyses is essential for many problems in ecology and evolutionary biology. This book begins by explaining the theory behind the statistical methodology, including chapters on conceptual issues, the implementation of an SEM study and the history of the development of SEM. The second section provides examples of analyses on biological data including multi-group models, means models, P-technique and time-series. The final section of the book deals with computer applications and contrasts three popular SEM software packages. Aimed specifically at biological researchers and graduate students, this book will serve as valuable resource for both learning and teaching the SEM methodology. Moreover, data sets and programs that are presented in the book can also be downloaded from a website to assist the learning process.
Author | : Todd D. Little |
Publisher | : Guilford Press |
Total Pages | : 411 |
Release | : 2013-02-26 |
Genre | : Psychology |
ISBN | : 1462510272 |
This book has been replaced by Longitudinal Structural Equation Modeling, Second Edition, ISBN 978-1-4625-5314-3.
Author | : Ralph O. Mueller |
Publisher | : Springer Science & Business Media |
Total Pages | : 252 |
Release | : 2012-12-06 |
Genre | : Social Science |
ISBN | : 1461239745 |
During the last two decades, structural equation modeling (SEM) has emerged as a powerful multivariate data analysis tool in social science research settings, especially in the fields of sociology, psychology, and education. Although its roots can be traced back to the first half of this century, when Spearman (1904) developed factor analysis and Wright (1934) introduced path analysis, it was not until the 1970s that the works by Karl Joreskog and his associates (e. g. , Joreskog, 1977; Joreskog and Van Thillo, 1973) began to make general SEM techniques accessible to the social and behavioral science research communities. Today, with the development and increasing avail ability of SEM computer programs, SEM has become a well-established and respected data analysis method, incorporating many of the traditional analysis techniques as special cases. State-of-the-art SEM software packages such as LISREL (Joreskog and Sorbom, 1993a,b) and EQS (Bentler, 1993; Bentler and Wu, 1993) handle a variety of ordinary least squares regression designs as well as complex structural equation models involving variables with arbitrary distributions. Unfortunately, many students and researchers hesitate to use SEM methods, perhaps due to the somewhat complex underlying statistical repre sentation and theory. In my opinion, social science students and researchers can benefit greatly from acquiring knowledge and skills in SEM since the methods-applied appropriately-can provide a bridge between the theo retical and empirical aspects of behavioral research.