Basic Category Theory
Download Basic Category Theory full books in PDF, epub, and Kindle. Read online free Basic Category Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Tom Leinster |
Publisher | : Cambridge University Press |
Total Pages | : 193 |
Release | : 2014-07-24 |
Genre | : Mathematics |
ISBN | : 1107044243 |
A short introduction ideal for students learning category theory for the first time.
Author | : Benjamin C. Pierce |
Publisher | : MIT Press |
Total Pages | : 117 |
Release | : 1991-08-07 |
Genre | : Computers |
ISBN | : 0262326450 |
Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Category theory is a branch of pure mathematics that is becoming an increasingly important tool in theoretical computer science, especially in programming language semantics, domain theory, and concurrency, where it is already a standard language of discourse. Assuming a minimum of mathematical preparation, Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Four case studies illustrate applications of category theory to programming language design, semantics, and the solution of recursive domain equations. A brief literature survey offers suggestions for further study in more advanced texts. Contents Tutorial • Applications • Further Reading
Author | : Emily Riehl |
Publisher | : Courier Dover Publications |
Total Pages | : 273 |
Release | : 2017-03-09 |
Genre | : Mathematics |
ISBN | : 0486820807 |
Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.
Author | : Gregory Maxwell Kelly |
Publisher | : CUP Archive |
Total Pages | : 260 |
Release | : 1982-02-18 |
Genre | : Mathematics |
ISBN | : 9780521287029 |
Author | : Saunders Mac Lane |
Publisher | : Springer Science & Business Media |
Total Pages | : 320 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 1475747217 |
An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.
Author | : Harold Simmons |
Publisher | : Cambridge University Press |
Total Pages | : 237 |
Release | : 2011-09-22 |
Genre | : Mathematics |
ISBN | : 1139503324 |
Category theory provides a general conceptual framework that has proved fruitful in subjects as diverse as geometry, topology, theoretical computer science and foundational mathematics. Here is a friendly, easy-to-read textbook that explains the fundamentals at a level suitable for newcomers to the subject. Beginning postgraduate mathematicians will find this book an excellent introduction to all of the basics of category theory. It gives the basic definitions; goes through the various associated gadgetry, such as functors, natural transformations, limits and colimits; and then explains adjunctions. The material is slowly developed using many examples and illustrations to illuminate the concepts explained. Over 200 exercises, with solutions available online, help the reader to access the subject and make the book ideal for self-study. It can also be used as a recommended text for a taught introductory course.
Author | : Brendan Fong |
Publisher | : Cambridge University Press |
Total Pages | : 351 |
Release | : 2019-07-18 |
Genre | : Mathematics |
ISBN | : 1108582249 |
Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.
Author | : Niles Johnson |
Publisher | : Oxford University Press, USA |
Total Pages | : 636 |
Release | : 2021-01-31 |
Genre | : Mathematics |
ISBN | : 0198871376 |
2-Dimensional Categories is an introduction to 2-categories and bicategories, assuming only the most elementary aspects of category theory.
Author | : Steve Awodey |
Publisher | : Oxford University Press |
Total Pages | : 328 |
Release | : 2010-06-17 |
Genre | : Mathematics |
ISBN | : 0199587361 |
A comprehensive reference to category theory for students and researchers in mathematics, computer science, logic, cognitive science, linguistics, and philosophy. Useful for self-study and as a course text, the book includes all basic definitions and theorems (with full proofs), as well as numerous examples and exercises.
Author | : Bartosz Milewski |
Publisher | : |
Total Pages | : |
Release | : 2019-08-24 |
Genre | : |
ISBN | : 9780464243878 |
Category Theory is one of the most abstract branches of mathematics. It is usually taught to graduate students after they have mastered several other branches of mathematics, like algebra, topology, and group theory. It might, therefore, come as a shock that the basic concepts of category theory can be explained in relatively simple terms to anybody with some experience in programming.That's because, just like programming, category theory is about structure. Mathematicians discover structure in mathematical theories, programmers discover structure in computer programs. Well-structured programs are easier to understand and maintain and are less likely to contain bugs. Category theory provides the language to talk about structure and learning it will make you a better programmer.