Banach Spaces of Analytic Functions and Absolutely Summing Operators

Banach Spaces of Analytic Functions and Absolutely Summing Operators
Author: Aleksander Pełczyński
Publisher: American Mathematical Soc.
Total Pages: 98
Release: 1977-12-31
Genre: Mathematics
ISBN: 0821816802

This book surveys results concerning bases and various approximation properties in the classical spaces of analytical functions. It contains extensive bibliographical comments.

Absolutely Summing Operators

Absolutely Summing Operators
Author: Joe Diestel
Publisher: Cambridge University Press
Total Pages: 494
Release: 1995-04-27
Genre: Mathematics
ISBN: 9780521431682

This text provides the beginning graduate student with an account of p-summing and related operators.

Banach Spaces for Analysts

Banach Spaces for Analysts
Author: P. Wojtaszczyk
Publisher: Cambridge University Press
Total Pages: 400
Release: 1996-08
Genre: Mathematics
ISBN: 9780521566759

This book is intended to be used with graduate courses in Banach space theory.

Composition Operators on Spaces of Analytic Functions

Composition Operators on Spaces of Analytic Functions
Author: Carl C. Cowen Jr.
Publisher: Routledge
Total Pages: 404
Release: 2019-03-04
Genre: Mathematics
ISBN: 1351459139

The study of composition operators lies at the interface of analytic function theory and operator theory. Composition Operators on Spaces of Analytic Functions synthesizes the achievements of the past 25 years and brings into focus the broad outlines of the developing theory. It provides a comprehensive introduction to the linear operators of composition with a fixed function acting on a space of analytic functions. This new book both highlights the unifying ideas behind the major theorems and contrasts the differences between results for related spaces. Nine chapters introduce the main analytic techniques needed, Carleson measure and other integral estimates, linear fractional models, and kernel function techniques, and demonstrate their application to problems of boundedness, compactness, spectra, normality, and so on, of composition operators. Intended as a graduate-level textbook, the prerequisites are minimal. Numerous exercises illustrate and extend the theory. For students and non-students alike, the exercises are an integral part of the book. By including the theory for both one and several variables, historical notes, and a comprehensive bibliography, the book leaves the reader well grounded for future research on composition operators and related areas in operator or function theory.

Classical Banach Spaces II

Classical Banach Spaces II
Author: J. Lindenstrauss
Publisher: Springer Science & Business Media
Total Pages: 253
Release: 2013-12-11
Genre: Mathematics
ISBN: 3662353474

Function Spaces

Function Spaces
Author: Krzysztof Jarov
Publisher: CRC Press
Total Pages: 450
Release: 1991-12-23
Genre: Mathematics
ISBN: 9780824786120

This book is based on the conference on Function Spaces held at Southern Illinois University at Edwardsville, in April, 1990. It is designed to cover a wide range of topics, including spaces of analytic functions, isometries of function spaces, geometry of Banach spaces, and Banach algebras.

Function Spaces

Function Spaces
Author: Krzysztof Jarosz
Publisher: American Mathematical Soc.
Total Pages: 384
Release: 1999
Genre: Mathematics
ISBN: 0821809393

This proceedings volume presents 36 papers given by leading experts during the Third Conference on Function Spaces held at Southern Illinois University at Edwardsville. A wide range of topics in the subject area are covered. Most papers are written for nonexperts, so the book can serve as a good introduction to the topic for those interested in this area. The book presents the following broad range of topics, including spaces and algebras of analytic functions of one and of many variables, $Lp$ spaces, spaces of Banach-valued functions, isometries of function spaces, geometry of Banach spaces and related subjects. Known results, open problems, and new discoveries are featured. At the time of publication, information about the book, the conference, and a list and pictures of contributors are available on the Web at www.siue.edu/MATH/conference.htm.

Hardy Martingales

Hardy Martingales
Author: Paul F. X. Müller
Publisher: Cambridge University Press
Total Pages:
Release: 2022-07-14
Genre: Mathematics
ISBN: 1108985963

This book presents the probabilistic methods around Hardy martingales for an audience interested in their applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Jones, Maurey, Pisier, and Varopoulos, it discusses in detail those martingale spaces that reflect characteristic qualities of complex analytic functions. Its particular themes are holomorphic random variables on Wiener space, and Hardy martingales on the infinite torus product, and numerous deep applications to the geometry and classification of complex Banach spaces, e.g., the SL∞ estimates for Doob's projection operator, the embedding of L1 into L1/H1, the isomorphic classification theorem for the polydisk algebras, or the real variables characterization of Banach spaces with the analytic Radon Nikodym property. Due to the inclusion of key background material on stochastic analysis and Banach space theory, it's suitable for a wide spectrum of researchers and graduate students working in classical and functional analysis.

Bounded Analytic Functions

Bounded Analytic Functions
Author: John Garnett
Publisher: Springer Science & Business Media
Total Pages: 471
Release: 2007-04-05
Genre: Mathematics
ISBN: 0387497633

This book is an account of the theory of Hardy spaces in one dimension, with emphasis on some of the exciting developments of the past two decades or so. The last seven of the ten chapters are devoted in the main to these recent developments. The motif of the theory of Hardy spaces is the interplay between real, complex, and abstract analysis. While paying proper attention to each of the three aspects, the author has underscored the effectiveness of the methods coming from real analysis, many of them developed as part of a program to extend the theory to Euclidean spaces, where the complex methods are not available.