Automorphic Representations And L Functions For The General Linear Group
Download Automorphic Representations And L Functions For The General Linear Group full books in PDF, epub, and Kindle. Read online free Automorphic Representations And L Functions For The General Linear Group ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Dorian Goldfeld |
Publisher | : Cambridge University Press |
Total Pages | : 210 |
Release | : 2011-04-21 |
Genre | : Mathematics |
ISBN | : 9781107007994 |
This graduate-level textbook provides an elementary exposition of the theory of automorphic representations and L-functions for the general linear group in an adelic setting. Definitions are kept to a minimum and repeated when reintroduced so that the book is accessible from any entry point, and with no prior knowledge of representation theory. The book includes concrete examples of global and local representations of GL(n), and presents their associated L-functions. In Volume 1, the theory is developed from first principles for GL(1), then carefully extended to GL(2) with complete detailed proofs of key theorems. Several proofs are presented for the first time, including Jacquet's simple and elegant proof of the tensor product theorem. In Volume 2, the higher rank situation of GL(n) is given a detailed treatment. Containing numerous exercises, this book will motivate students and researchers to begin working in this fertile field of research.
Author | : Dorian Goldfeld |
Publisher | : Cambridge University Press |
Total Pages | : 572 |
Release | : 2011-04-21 |
Genre | : Mathematics |
ISBN | : 9780521474238 |
This graduate-level textbook provides an elementary exposition of the theory of automorphic representations and L-functions for the general linear group in an adelic setting. The authors keep definitions to a minimum and repeat them when reintroduced so that the book is accessible from any entry point, and with no prior knowledge of representation theory. They also include concrete examples of both global and local representations of GL(n), and present their associated L-functions. The theory is developed from first principles for GL(1), then carefully extended to GL(2) with complete detailed proofs of key theorems. Several of the proofs are here presented for the first time, including Jacquet's simple and elegant proof of the tensor product theorem. Finally, the higher rank situation of GL(n) is given a detailed treatment. Containing numerous exercises, this book will motivate students and researchers to begin working in this fertile field of research.
Author | : Dorian Goldfeld |
Publisher | : Cambridge University Press |
Total Pages | : 571 |
Release | : 2011-04-21 |
Genre | : Mathematics |
ISBN | : 1139500139 |
This graduate-level textbook provides an elementary exposition of the theory of automorphic representations and L-functions for the general linear group in an adelic setting. Definitions are kept to a minimum and repeated when reintroduced so that the book is accessible from any entry point, and with no prior knowledge of representation theory. The book includes concrete examples of global and local representations of GL(n), and presents their associated L-functions. In Volume 1, the theory is developed from first principles for GL(1), then carefully extended to GL(2) with complete detailed proofs of key theorems. Several proofs are presented for the first time, including Jacquet's simple and elegant proof of the tensor product theorem. In Volume 2, the higher rank situation of GL(n) is given a detailed treatment. Containing numerous exercises by Xander Faber, this book will motivate students and researchers to begin working in this fertile field of research.
Author | : H. Jacquet |
Publisher | : Springer |
Total Pages | : 156 |
Release | : 2006-11-15 |
Genre | : Mathematics |
ISBN | : 3540376127 |
Author | : Armand Borel |
Publisher | : American Mathematical Soc. |
Total Pages | : 394 |
Release | : 1979-06-30 |
Genre | : Mathematics |
ISBN | : 0821814370 |
Part 2 contains sections on Automorphic representations and $L$-functions, Arithmetical algebraic geometry and $L$-functions
Author | : D. Goldfeld |
Publisher | : |
Total Pages | : 188 |
Release | : 2011 |
Genre | : Automorphic forms |
ISBN | : 9781139076579 |
This modern, graduate-level textbook does not assume prior knowledge of representation theory. Includes numerous concrete examples and exercises.
Author | : D. Bump |
Publisher | : Springer |
Total Pages | : 196 |
Release | : 2006-12-08 |
Genre | : Mathematics |
ISBN | : 3540390553 |
Author | : David Ginzburg |
Publisher | : World Scientific |
Total Pages | : 350 |
Release | : 2011 |
Genre | : Mathematics |
ISBN | : 9814304999 |
1. Introduction. 1.1. Overview. 1.2. Formulas for the Weil representation. 1.3. The case, where H is unitary and the place v splits in E -- 2. On certain residual representations. 2.1. The groups. 2.2. The Eisenstein series to be considered. 2.3. L-groups and representations related to P[symbol]. 2.4. The residue representation. 2.5. The case of a maximal parabolic subgroup (r = 1). 2.6. A preliminary lemma on Eisenstein series on GL[symbol]. 2.7. Constant terms of E(h, f[symbol]). 2.8. Description of W(M[symbol], D[symbol]). 2.9. Continuation of the proff of Theorem 2.1 -- 3. Coefficients of Gelfand-Graev type, of Fourier-Jacobi type, and descent. 3.1. Gelfand-Graev coefficients. 3.2. Fourier-Jacobi coefficients. 3.3. Nilpotent orbits. 3.4. Global integrals representing L-functions I. 3.5. Global integrals representing L-functions II. 3.6. Definition of the descent. 3.7. Definition of Jacquet modules corresponding to Gelfand-Graev characters. 3.8. Definition of Jacquet modules corresponding to Fourier-Jacobi characters -- 4. Some double coset decompositions. 4.1. The space Q[symbol]. 4.2. A set of representatives for Q[symbol]. 4.3. Stabilizers. 4.4. The set Q\h[symbol] -- 5. Jacquet modules of parabolic inductions : Gelfand-Graev characters. 5.1. The case where K is a field. 5.2. The case K = k[symbol]k -- 6. Jacquet modules of parabolic inductions : Fourier-Jacobi characters. 6.1. The case where K is a field. 6.2. The case K = k[symbol]k -- 7. The tower property. 7.1. A general lemma on "exchanging roots". 7.2. A formula for constant terms of Gelfand-Graev coefficients. 7.3. Global Gelfand-Graev models for cuspidal representations. 7.4. The general case : H is neither split nor quasi-split. 7.5. Global Gelfand-Graev models for the residual representations E[symbol]. 7.6. A formula for constant terms of Fourier-Jacobi coefficients. 7.7. Global Fourier-Jacobi models for cuspidal representations. 7.8. Global Fourier-Jacobi models for the residual representations E[symbol]
Author | : Roger Godement |
Publisher | : Springer |
Total Pages | : 200 |
Release | : 2006-11-14 |
Genre | : Mathematics |
ISBN | : 3540374361 |
Author | : Henryk Iwaniec |
Publisher | : American Mathematical Soc. |
Total Pages | : 274 |
Release | : 1997 |
Genre | : Mathematics |
ISBN | : 0821807773 |
This volume discusses various perspectives of the theory of automorphic forms drawn from the author's notes from a Rutgers University graduate course. In addition to detailed and often nonstandard treatment of familiar theoretical topics, the author also gives special attention to such subjects as theta- functions and representatives by quadratic forms. Annotation copyrighted by Book News, Inc., Portland, OR