Attractors Bifurcations And Chaos
Download Attractors Bifurcations And Chaos full books in PDF, epub, and Kindle. Read online free Attractors Bifurcations And Chaos ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Tönu Puu |
Publisher | : Springer Science & Business Media |
Total Pages | : 572 |
Release | : 2003-07-10 |
Genre | : Mathematics |
ISBN | : 9783540402268 |
Attractors, Bifurcations, & Chaos - now in its second edition - begins with an introduction to mathematical methods in modern nonlinear dynamics and deals with differential equations. Phenomena such as bifurcations and deterministic chaos are given considerable emphasis, both in the methodological part, and in the second part, containing various applications in economics and in regional science. Coexistence of attractors and the multiplicity of development paths in nonlinear systems are central topics. The applications focus on issues such as business cycles, oligopoly, interregional trade dynamics, and economic development theory.
Author | : Colin Sparrow |
Publisher | : Springer Science & Business Media |
Total Pages | : 280 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 1461257670 |
The equations which we are going to study in these notes were first presented in 1963 by E. N. Lorenz. They define a three-dimensional system of ordinary differential equations that depends on three real positive parameters. As we vary the parameters, we change the behaviour of the flow determined by the equations. For some parameter values, numerically computed solutions of the equations oscillate, apparently forever, in the pseudo-random way we now call "chaotic"; this is the main reason for the immense amount of interest generated by the equations in the eighteen years since Lorenz first presented them. In addition, there are some parameter values for which we see "preturbulence", a phenomenon in which trajectories oscillate chaotically for long periods of time before finally settling down to stable stationary or stable periodic behaviour, others in which we see "intermittent chaos", where trajectories alternate be tween chaotic and apparently stable periodic behaviours, and yet others in which we see "noisy periodicity", where trajectories appear chaotic though they stay very close to a non-stable periodic orbit. Though the Lorenz equations were not much studied in the years be tween 1963 and 1975, the number of man, woman, and computer hours spent on them in recent years - since they came to the general attention of mathematicians and other researchers - must be truly immense.
Author | : Wanda Szemplinska-stupnicka |
Publisher | : World Scientific |
Total Pages | : 117 |
Release | : 2003-11-11 |
Genre | : Technology & Engineering |
ISBN | : 981448363X |
During the last twenty years, a large number of books on nonlinear chaotic dynamics in deterministic dynamical systems have appeared. These academic tomes are intended for graduate students and require a deep knowledge of comprehensive, advanced mathematics. There is a need for a book that is accessible to general readers, a book that makes it possible to get a good deal of knowledge about complex chaotic phenomena in nonlinear oscillators without deep mathematical study.Chaos, Bifurcations and Fractals Around Us: A Brief Introduction fills that gap. It is a very short monograph that, owing to geometric interpretation complete with computer color graphics, makes it easy to understand even very complex advanced concepts of chaotic dynamics. This invaluable publication is also addressed to lecturers in engineering departments who want to include selected nonlinear problems in full time courses on general mechanics, vibrations or physics so as to encourage their students to conduct further study.
Author | : Tönu Puu |
Publisher | : Springer |
Total Pages | : 528 |
Release | : 2000-03-06 |
Genre | : Business & Economics |
ISBN | : |
Attractors, Bifurcations, & Chaos - now in its second edition - begins with an introduction to mathematical methods in modern nonlinear dynamics and deals with differential equations. Phenomena such as bifurcations and deterministic chaos are given considerable emphasis, both in the methodological part, and in the second part, containing various applications in economics and in regional science. Coexistence of attractors and the multiplicity of development paths in nonlinear systems are central topics. The applications focus on issues such as business cycles, oligopoly, interregional trade dynamics, and economic development theory.
Author | : Stephen Wiggins |
Publisher | : Springer Science & Business Media |
Total Pages | : 505 |
Release | : 2013-11-27 |
Genre | : Mathematics |
ISBN | : 1461210429 |
Global Bifurcations and Chaos: Analytical Methods is unique in the literature of chaos in that it not only defines the concept of chaos in deterministic systems, but it describes the mechanisms which give rise to chaos (i.e., homoclinic and heteroclinic motions) and derives explicit techniques whereby these mechanisms can be detected in specific systems. These techniques can be viewed as generalizations of Melnikov's method to multi-degree of freedom systems subject to slowly varying parameters and quasiperiodic excitations. A unique feature of the book is that each theorem is illustrated with drawings that enable the reader to build visual pictures of global dynamcis of the systems being described. This approach leads to an enhanced intuitive understanding of the theory.
Author | : Steven H. Strogatz |
Publisher | : CRC Press |
Total Pages | : 532 |
Release | : 2018-05-04 |
Genre | : Mathematics |
ISBN | : 0429961111 |
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Author | : Jacob Palis Júnior |
Publisher | : Cambridge University Press |
Total Pages | : 248 |
Release | : 1995-01-05 |
Genre | : Mathematics |
ISBN | : 9780521475723 |
A self-contained introduction to the classical theory and its generalizations, aimed at mathematicians and scientists working in dynamical systems.
Author | : Elhadj Zeraoulia |
Publisher | : World Scientific |
Total Pages | : 473 |
Release | : 2012 |
Genre | : Mathematics |
ISBN | : 9814374083 |
Robust chaos is defined by the absence of periodic windows and coexisting attractors in some neighborhoods in the parameter space of a dynamical system. This unique book explores the definition, sources, and roles of robust chaos. The book is written in a reasonably self-contained manner and aims to provide students and researchers with the necessary understanding of the subject. Most of the known results, experiments, and conjectures about chaos in general and about robust chaos in particular are collected here in a pedagogical form. Many examples of dynamical systems, ranging from purely mathematical to natural and social processes displaying robust chaos, are discussed in detail. At the end of each chapter is a set of exercises and open problems intended to reinforce the ideas and provide additional experiences for both readers and researchers in nonlinear science in general, and chaos theory in particular.
Author | : Soumitro Banerjee |
Publisher | : Wiley-IEEE Press |
Total Pages | : 480 |
Release | : 2001-07-16 |
Genre | : Mathematics |
ISBN | : |
Brings the knowledge of 24 experts in this maturing field out from the narrow confines of academic circles, and makes it accessible to graduate students and power electronics professionals alike. * Provides practicing engineers with the knowledge to predict power requirement behavior. * The insights gained from this all-inclusive compilation will ultimately lead to better design methodologies.
Author | : Jan Awrejcewicz |
Publisher | : World Scientific |
Total Pages | : 564 |
Release | : 2003 |
Genre | : Science |
ISBN | : 9812384596 |
This book presents the theoretical frame for studying lumped nonsmooth dynamical systems: the mathematical methods are recalled, and adapted numerical methods are introduced (differential inclusions, maximal monotone operators, Filippov theory, Aizerman theory, etc.). Tools available for the analysis of classical smooth nonlinear dynamics (stability analysis, the Melnikov method, bifurcation scenarios, numerical integrators, solvers, etc.) are extended to the nonsmooth frame. Many models and applications arising from mechanical engineering, electrical circuits, material behavior and civil engineering are investigated to illustrate theoretical and computational developments.