Asymptotics of Analytic Difference Equations
Author | : G. K. Immink |
Publisher | : Springer |
Total Pages | : 140 |
Release | : 2006-12-08 |
Genre | : Mathematics |
ISBN | : 354039060X |
Download Asymptotics Of Analytic Difference Equations full books in PDF, epub, and Kindle. Read online free Asymptotics Of Analytic Difference Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : G. K. Immink |
Publisher | : Springer |
Total Pages | : 140 |
Release | : 2006-12-08 |
Genre | : Mathematics |
ISBN | : 354039060X |
Author | : Carl M. Bender |
Publisher | : Springer Science & Business Media |
Total Pages | : 605 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 1475730691 |
A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.
Author | : Sigrun Bodine |
Publisher | : Springer |
Total Pages | : 411 |
Release | : 2015-05-26 |
Genre | : Mathematics |
ISBN | : 331918248X |
This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers in asymptotic integration as well to non-experts who are interested in the asymptotic analysis of linear differential and difference equations. It will additionally be of interest to students in mathematics, applied sciences, and engineering. Linear algebra and some basic concepts from advanced calculus are prerequisites.
Author | : Ovidiu Costin |
Publisher | : CRC Press |
Total Pages | : 266 |
Release | : 2008-12-04 |
Genre | : Mathematics |
ISBN | : 1420070320 |
Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, tr
Author | : R Mickens |
Publisher | : CRC Press |
Total Pages | : 470 |
Release | : 1991-01-01 |
Genre | : Mathematics |
ISBN | : 9780442001360 |
In recent years, the study of difference equations has acquired a new significance, due in large part to their use in the formulation and analysis of discrete-time systems, the numerical integration of differential equations by finite-difference schemes, and the study of deterministic chaos. The second edition of Difference Equations: Theory and Applications provides a thorough listing of all major theorems along with proofs. The text treats the case of first-order difference equations in detail, using both analytical and geometrical methods. Both ordinary and partial difference equations are considered, along with a variety of special nonlinear forms for which exact solutions can be determined. Numerous worked examples and problems allow readers to fully understand the material in the text. They also give possible generalization of the theorems and application models. The text's expanded coverage of application helps readers appreciate the benefits of using difference equations in the modeling and analysis of "realistic" problems from a broad range of fields. The second edition presents, analyzes, and discusses a large number of applications from the mathematical, biological, physical, and social sciences. Discussions on perturbation methods and difference equation models of differential equation models of differential equations represent contributions by the author to the research literature. Reference to original literature show how the elementary models of the book can be extended to more realistic situations. Difference Equations, Second Edition gives readers a background in discrete mathematics that many workers in science-oriented industries need as part of their general scientific knowledge. With its minimal mathematical background requirements of general algebra and calculus, this unique volume will be used extensively by students and professional in science and technology, in areas such as applied mathematics, control theory, population science, economics, and electronic circuits, especially discrete signal processing.
Author | : Saber N. Elaydi |
Publisher | : CRC Press |
Total Pages | : 328 |
Release | : 2002-02-28 |
Genre | : Mathematics |
ISBN | : 9780415283892 |
This series on the International Conference on Difference Equations and Applications has established a tradition within the mathematical community. It brings together scientists from many different areas of research to highlight current interests, challenges and unsolved problems. This volume comprises selected papers presented at the Fifth International Conference on Difference Equations, held at Temuco, Chile. Experts from around the globe examine many facets of difference equations, including extended hyperbolic difference equations, oscillation criteria, invertability, one- and two-dimensional perturbed maps and much more. It provides a valuable source of reference for graduates and researchers.
Author | : Ronald E. Mickens |
Publisher | : CRC Press |
Total Pages | : 551 |
Release | : 2015-03-06 |
Genre | : Mathematics |
ISBN | : 1482230798 |
Difference Equations: Theory, Applications and Advanced Topics, Third Edition provides a broad introduction to the mathematics of difference equations and some of their applications. Many worked examples illustrate how to calculate both exact and approximate solutions to special classes of difference equations. Along with adding several advanced to
Author | : Ronald E. Mickens |
Publisher | : CRC Press |
Total Pages | : 464 |
Release | : 2022-02-17 |
Genre | : Mathematics |
ISBN | : 1000109852 |
In recent years, the study of difference equations has acquired a new significance, due in large part to their use in the formulation and analysis of discrete-time systems, the numerical integration of differential equations by finite-difference schemes, and the study of deterministic chaos. The second edition of Difference Equations: Theory and Applications provides a thorough listing of all major theorems along with proofs. The text treats the case of first-order difference equations in detail, using both analytical and geometrical methods. Both ordinary and partial difference equations are considered, along with a variety of special nonlinear forms for which exact solutions can be determined. Numerous worked examples and problems allow readers to fully understand the material in the text. They also give possible generalization of the theorems and application models. The text's expanded coverage of application helps readers appreciate the benefits of using difference equations in the modeling and analysis of "realistic" problems from a broad range of fields. The second edition presents, analyzes, and discusses a large number of applications from the mathematical, biological, physical, and social sciences. Discussions on perturbation methods and difference equation models of differential equation models of differential equations represent contributions by the author to the research literature. Reference to original literature show how the elementary models of the book can be extended to more realistic situations. Difference Equations, Second Edition gives readers a background in discrete mathematics that many workers in science-oriented industries need as part of their general scientific knowledge. With its minimal mathematical background requirements of general algebra and calculus, this unique volume will be used extensively by students and professional in science and technology, in areas such as applied mathematics, control theory, population science, economics, and electronic circuits, especially discrete signal processing.
Author | : M.H. Lantsman |
Publisher | : Springer Science & Business Media |
Total Pages | : 450 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 9401597979 |
The asymptotic theory deals with the problern of determining the behaviour of a function in a neighborhood of its singular point. The function is replaced by another known function ( named the asymptotic function) close (in a sense) to the function under consideration. Many problems of mathematics, physics, and other divisions of natural sci ence bring out the necessity of solving such problems. At the present time asymptotic theory has become an important and independent branch of mathematical analysis. The present consideration is mainly based on the theory of asymp totic spaces. Each asymptotic space is a collection of asymptotics united by an associated real function which determines their growth near the given point and (perhaps) some other analytic properties. The main contents of this book is the asymptotic theory of ordinary linear differential equations with variable coefficients. The equations with power order growth coefficients are considered in detail. As the application of the theory of differential asymptotic fields, we also consider the following asymptotic problems: the behaviour of explicit and implicit functions, improper integrals, integrals dependent on a large parameter, linear differential and difference equations, etc .. The obtained results have an independent meaning. The reader is assumed to be familiar with a comprehensive course of the mathematical analysis studied, for instance at mathematical departments of universities. Further necessary information is given in this book in summarized form with proofs of the main aspects.
Author | : Walter G. Kelley |
Publisher | : Academic Press |
Total Pages | : 418 |
Release | : 2001 |
Genre | : Mathematics |
ISBN | : 9780124033306 |
Difference Equations, Second Edition, presents a practical introduction to this important field of solutions for engineering and the physical sciences. Topic coverage includes numerical analysis, numerical methods, differential equations, combinatorics and discrete modeling. A hallmark of this revision is the diverse application to many subfields of mathematics. Phase plane analysis for systems of two linear equations Use of equations of variation to approximate solutions Fundamental matrices and Floquet theory for periodic systems LaSalle invariance theorem Additional applications: secant line method, Bison problem, juvenile-adult population model, probability theory Appendix on the use of Mathematica for analyzing difference equaitons Exponential generating functions Many new examples and exercises