Asymptotic Properties Of Solutions Of Nonautonomous Ordinary Differential Equations
Download Asymptotic Properties Of Solutions Of Nonautonomous Ordinary Differential Equations full books in PDF, epub, and Kindle. Read online free Asymptotic Properties Of Solutions Of Nonautonomous Ordinary Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ivan Kiguradze |
Publisher | : Springer Science & Business Media |
Total Pages | : 343 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 9401118086 |
This volume provides a comprehensive review of the developments which have taken place during the last thirty years concerning the asymptotic properties of solutions of nonautonomous ordinary differential equations. The conditions of oscillation of solutions are established, and some general theorems on the classification of equations according to their oscillatory properties are proved. In addition, the conditions are found under which nonlinear equations do not have singular, proper, oscillatory and monotone solutions. The book has five chapters: Chapter I deals with linear differential equations; Chapter II with quasilinear equations; Chapter III with general nonlinear differential equations; and Chapter IV and V deal, respectively, with higher-order and second-order differential equations of the Emden-Fowler type. Each section contains problems, including some which presently remain unsolved. The volume concludes with an extensive list of references. For researchers and graduate students interested in the qualitative theory of differential equations.
Author | : Everaldo M. Bonotto |
Publisher | : John Wiley & Sons |
Total Pages | : 514 |
Release | : 2021-09-15 |
Genre | : Mathematics |
ISBN | : 1119654939 |
GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES AND APPLICATIONS Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results of the theory of Generalized ODEs in abstract spaces. The book covers applications to other types of differential equations, including Measure Functional Differential Equations (measure FDEs). It presents a uniform collection of qualitative results of Generalized ODEs and offers readers an introduction to several theories, including ordinary differential equations, impulsive differential equations, functional differential equations, dynamical equations on time scales, and more. Throughout the book, the focus is on qualitative theory and on corresponding results for other types of differential equations, as well as the connection between Generalized Ordinary Differential Equations and impulsive differential equations, functional differential equations, measure differential equations and dynamic equations on time scales. The book’s descriptions will be of use in many mathematical contexts, as well as in the social and natural sciences. Readers will also benefit from the inclusion of: A thorough introduction to regulated functions, including their basic properties, equiregulated sets, uniform convergence, and relatively compact sets An exploration of the Kurzweil integral, including its definitions and basic properties A discussion of measure functional differential equations, including impulsive measure FDEs The interrelationship between generalized ODEs and measure FDEs A treatment of the basic properties of generalized ODEs, including the existence and uniqueness of solutions, and prolongation and maximal solutions Perfect for researchers and graduate students in Differential Equations and Dynamical Systems, Generalized Ordinary Differential Equations in Abstract Spaces and Applications will also earn a place in the libraries of advanced undergraduate students taking courses in the subject and hoping to move onto graduate studies.
Author | : Dimit?r Ba?nov |
Publisher | : World Scientific |
Total Pages | : 246 |
Release | : 1995 |
Genre | : Mathematics |
ISBN | : 9810218230 |
The question of the presence of various asymptotic properties of the solutions of ordinary differential equations arises when solving various practical problems. The investigation of these questions is still more important for impulsive differential equations which have a wider field of application than the ordinary ones.The results obtained by treating the asymptotic properties of the solutions of impulsive differential equations can be found in numerous separate articles. The systematized exposition of these results in a separate book will satisfy the growing interest in the problems related to the asymptotic properties of the solutions of impulsive differential equations and their applications.
Author | : Clemente Cesarano |
Publisher | : MDPI |
Total Pages | : 194 |
Release | : 2020-02-21 |
Genre | : Mathematics |
ISBN | : 3039283723 |
This Special Issue focuses mainly on techniques and the relative formalism typical of numerical methods and therefore of numerical analysis, more generally. These fields of study of mathematics represent an important field of investigation both in the field of applied mathematics and even more exquisitely in the pure research of the theory of approximation and the study of polynomial relations as well as in the analysis of the solutions of the differential equations both ordinary and partial derivatives. Therefore, a substantial part of research on the topic of numerical analysis cannot exclude the fundamental role played by approximation theory and some of the tools used to develop this research. In this Special Issue, we want to draw attention to the mathematical methods used in numerical analysis, such as special functions, orthogonal polynomials, and their theoretical tools, such as Lie algebra, to study the concepts and properties of some special and advanced methods, which are useful in the description of solutions of linear and nonlinear differential equations. A further field of investigation is dedicated to the theory and related properties of fractional calculus with its adequate application to numerical methods.
Author | : Sandra Pinelas |
Publisher | : Springer Nature |
Total Pages | : 754 |
Release | : 2020-10-21 |
Genre | : Mathematics |
ISBN | : 3030563235 |
This edited volume gathers selected, peer-reviewed contributions presented at the fourth International Conference on Differential & Difference Equations Applications (ICDDEA), which was held in Lisbon, Portugal, in July 2019. First organized in 2011, the ICDDEA conferences bring together mathematicians from various countries in order to promote cooperation in the field, with a particular focus on applications. The book includes studies on boundary value problems; Markov models; time scales; non-linear difference equations; multi-scale modeling; and myriad applications.
Author | : Kenneth Cooke |
Publisher | : World Scientific |
Total Pages | : 606 |
Release | : 1995-12-08 |
Genre | : |
ISBN | : 9814549371 |
This volume is dedicated to the memory of Professor Stavros Busenberg of Harvey Mudd College, who contributed so greatly to this field during 25 years prior to his untimely death. It contains about 60 invited papers by leading researchers in the areas of dynamical systems, mathematical studies in ecology, epidemics, and physiology, and industrial mathematics. Anyone interested in these areas will find much of value in these contributions.
Author | : Feliz Manuel Minhós |
Publisher | : MDPI |
Total Pages | : 158 |
Release | : 2021-04-15 |
Genre | : Mathematics |
ISBN | : 3036507108 |
This Special Edition contains new results on Differential and Integral Equations and Systems, covering higher-order Initial and Boundary Value Problems, fractional differential and integral equations and applications, non-local optimal control, inverse, and higher-order nonlinear boundary value problems, distributional solutions in the form of a finite series of the Dirac delta function and its derivatives, asymptotic properties’ oscillatory theory for neutral nonlinear differential equations, the existence of extremal solutions via monotone iterative techniques, predator–prey interaction via fractional-order models, among others. Our main goal is not only to show new trends in this field but also to showcase and provide new methods and techniques that can lead to future research.
Author | : Uri Elias |
Publisher | : Springer Science & Business Media |
Total Pages | : 232 |
Release | : 2013-03-14 |
Genre | : Mathematics |
ISBN | : 9401725179 |
Oscillation theory was born with Sturm's work in 1836. It has been flourishing for the past fifty years. Nowadays it is a full, self-contained discipline, turning more towards nonlinear and functional differential equations. Oscillation theory flows along two main streams. The first aims to study prop erties which are common to all linear differential equations. The other restricts its area of interest to certain families of equations and studies in maximal details phenomena which characterize only those equations. Among them we find third and fourth order equations, self adjoint equations, etc. Our work belongs to the second type and considers two term linear equations modeled after y(n) + p(x)y = O. More generally, we investigate LnY + p(x)y = 0, where Ln is a disconjugate operator and p(x) has a fixed sign. These equations enjoy a very rich structure and are the natural generalization of the Sturm-Liouville operator. Results about such equations are distributed over hundreds of research papers, many of them are reinvented again and again and the same phenomenon is frequently discussed from various points of view and different definitions of the authors. Our aim is to introduce an order into this plenty and arrange it in a unified and self contained way. The results are readapted and presented in a unified approach. In many cases completely new proofs are given and in no case is the original proof copied verbatim. Many new results are included.
Author | : Saber Elaydi |
Publisher | : Springer |
Total Pages | : 282 |
Release | : 2017-11-13 |
Genre | : Mathematics |
ISBN | : 9811064091 |
This volume contains the proceedings of the 22nd International Conference on Difference Equations and Applications, held at Osaka Prefecture University, Osaka, Japan, in July 2016. The conference brought together both experts and novices in the theory and applications of difference equations and discrete dynamical systems. The volume features papers in difference equations and discrete dynamical systems with applications to mathematical sciences and, in particular, mathematical biology and economics. This book will appeal to researchers, scientists, and educators who work in the fields of difference equations, discrete dynamical systems, and their applications.
Author | : |
Publisher | : Academic Publication |
Total Pages | : 309 |
Release | : |
Genre | : |
ISBN | : 9542940092 |